TY - JOUR A1 - Hobmeier, K. A1 - Cantone, M. A1 - Nguyen, Q. A. A1 - Pflüger-Grau, K. A1 - Kremling, A. A1 - Kunte, Hans-Jörg A1 - Pfeiffer, F. A1 - Marin-Sanguino, A. T1 - Adaptation to varying salinity in Halomonas elongata: Much more than ectoine accumulation N2 - The halophilic γ-proteobacterium Halomonas elongata DSM 2581T thrives at salt concentrations well above 10 % NaCl (1.7 M NaCl). A well-known osmoregulatory mechanism is the accumulation of the compatible solute ectoine within the cell in response to osmotic stress. While ectoine accumulation is central to osmoregulation and promotes resistance to high salinity in halophilic bacteria, ectoine has this effect only to a much lesser extent in non-halophiles. We carried out transcriptome analysis of H. elongata grown on two different carbon sources (acetate or glucose), and low (0.17 M NaCl), medium (1 M), and high salinity (2 M) to identify additional mechanisms for adaptation to high saline environments. To avoid a methodological bias, the transcripts were evaluated by applying two methods, DESeq2 and Transcripts Per Million (TPM). The differentially transcribed genes in response to the available carbon sources and salt stress were then compared to the transcriptome profile of Chromohalobacter salexigens, a closely related moderate halophilic bacterium. Transcriptome profiling supports the notion that glucose is degraded via the cytoplasmic Entner-Doudoroff pathway, whereas the Embden-Meyerhoff-Parnas pathway is employed for gluconeogenesis. The machinery of oxidative phosphorylation in H. elongata and C. salexigens differs greatly from that of non-halophilic organisms, and electron flow can occur from quinone to oxygen along four alternative routes. Two of these pathways via cytochrome bo' and cytochrome bd quinol oxidases seem to be upregulated in salt stressed cells. Among the most highly regulated genes in H. elongata and C. salexigens are those encoding chemotaxis and motility proteins, with genes for chemotaxis and flagellar assembly severely downregulated at low salt concentrations. We also compared transcripts at low and high-salt stress (low growth rate) with transcripts at optimal salt concentration and found that the majority of regulated genes were down-regulated in stressed cells, including many genes involved in carbohydrate metabolism, while ribosome synthesis was up-regulated, which is in contrast to what is known from non-halophiles at slow growth. Finally, comparing the acidity of the cytoplasmic proteomes of non-halophiles, extreme halophiles and moderate halophiles suggests adaptation to an increased cytoplasmic ion concentration of H. elongata. Taken together, these results lead us to propose a model for salt tolerance in H. elongata where ion accumulation plays a greater role in salt tolerance than previously assumed. KW - Ectoine KW - Osmoadaptation PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-545608 SN - 1664-302X VL - 13 SP - 1 EP - 19 PB - Frontiers Media CY - Lausanne AN - OPUS4-54560 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hobmeier, K. A1 - Oppermann, M. A1 - Stasinski, N. A1 - Kremling, A. A1 - Pflüger-Grau, K. A1 - Kunte, Hans-Jörg A1 - Marin Sanguino, A. T1 - Metabolic engineering of Halomonas elongata: Ectoine secretion is increased by demand and supply driven approaches N2 - The application of naturally-derived biomolecules in everyday products, replacing conventional synthetic manufacturing, is an ever-increasing market. An example of this is the compatible solute ectoine, which is contained in a plethora of treatment formulations for medicinal products and cosmetics. As of today, ectoine is produced in a scale of tons each year by the natural producer Halomonas elongata. In this work, we explore two complementary approaches to obtain genetically improved producer strains for ectoine production. We explore the effect of increased precursor supply (oxaloacetate) on ectoine production, as well as an implementation of increased ectoine demand through the overexpression of a transporter. Both approaches were implemented on an already genetically modified ectoine-excreting strain H. elongata KB2.13 (ΔteaABC ΔdoeA) and both led to new strains with higher ectoine excretion. The supply driven approach led to a 45% increase in ectoine titers in two different strains. This increase was attributed to the removal of phosphoenolpyruvate carboxykinase (PEPCK), which allowed the conversion of 17.9% of the glucose substrate to ectoine. For the demand driven approach, we investigated the potential of the TeaBC transmembrane proteins from the ectoine-specific Tripartite ATP-Independent Periplasmic (TRAP) transporter as export channels to improve ectoine excretion. In the absence of the substrate-binding protein TeaA, an overexpression of both subunits TeaBC facilitated a three-fold increased excretion rate of ectoine. Individually, the large subunit TeaC showed an approximately five times higher extracellular ectoine concentration per dry weight compared to TeaBC shortly after its expression was induced. However, the detrimental effect on growth and ectoine titer at the end of the process hints toward a negative impact of TeaC overexpression on membrane integrity and possibly leads to cell lysis. By using either strategy, the ectoine synthesis and excretion in H. elongata could be boosted drastically. The inherent complementary nature of these approaches point at a coordinated implementation of both as a promising strategy for future projects in Metabolic Engineering. Moreover, a wide variation of intracelllular ectoine levels was observed between the strains, which points at a major disruption of mechanisms responsible for ectoine regulation in strain KB2.13. KW - Osmoadaptation KW - Metabolic engineering PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555644 SN - 1664-302X VL - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-55564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schneider, Beate A1 - Pfeiffer, F. A1 - Dyall-Smith, M. A1 - Kunte, Hans-Jörg T1 - Genome Sequence of Cupriavidus campinensis Strain G5, a Member of a Bacterial Consortium Capable of Polyethylene Degradation N2 - Nine different bacterial isolates were recovered from landfills. Each isolate was obtained in pure culture. As a consortium, the bacteria degrade polyethylene. The complete genome sequence of strain G5 was determined by PacBio sequencing. Using the TYGS for taxonomic classification, strain G5 was assigned to the species Cupriavidus campinensis. KW - Polyethylene KW - Cupriavidus campinensis KW - Plastic degradation KW - Genome sequence PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-557897 SP - 1 EP - 2 PB - ASM AN - OPUS4-55789 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin-Sanchez, Pedro Maria A1 - Gorbushina, Anna A1 - Kunte, Hans-Jörg A1 - Toepel, Jörg T1 - A novel qPCR protocol for the specific detection and quantification of the fuel-deteriorating fungus Hormoconis resinae N2 - A wide variety of fungi and bacteria are known to contaminate fuels and fuel systems. These microbial contaminants have been linked to fuel system fouling and corrosion. The fungus Hormoconis resinae, a common jet fuel contaminant, is used in this study as a model for developing innovative risk assessment methods. A novel qPCR protocol to detect and quantify H. resinae in, and together with, total fungal contamination of fuel systems is reported. Two primer sets, targeting the markers RPB2 and ITS, were selected for their remarkable specificity and sensitivity. These primers were successfully applied on fungal cultures and diesel samples demonstrating the validity and reliability of the established qPCR protocol. This novel tool allows clarification of the current role of H. resinae in fuel contamination cases, as well as providing a technique to detect fungal outbreaks in fuel systems. This tool can be expanded to other well-known fuel-deteriorating microorganisms. KW - Microbial contamination KW - Real-time quantitative PCR KW - Microbiologically influenced corrosion; KW - Diesel biodeterioration KW - Fouling KW - Indicator PY - 2016 U6 - https://doi.org/10.1080/08927014.2016.1177515 SN - 0892-7014 VL - 32 IS - 6 SP - 635 EP - 644 PB - Taylor & Francis Group CY - Abingdon AN - OPUS4-37337 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brodehl, Antje A1 - Möller, Anne A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Maul, Ronald T1 - Biotransformation of the mycotoxin zearalenone by fungi of the genera Rhizopus and Aspergillus N2 - Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin biosynthesized by various Fusarium fungi. These fungal species frequently infest grains; therefore, ZEN represents a common contaminant in cereal products. The biotransformation of ZEN differs significantly from species to species, and several metabolites are known to be formed by animals, plants, and microorganisms. The aim of the present study was to investigate the microbial conversion of ZEN by species of the genera Rhizopus and Aspergillus representing relevant fungi for food processing (e.g. fermentation). To monitor the ZEN metabolism, ZEN was added to liquid cultures of the different fungal species. After a period of 3 days, the media were analyzed by HPLC-MS/MS for metabolite formation. Two Aspergillus oryzae strains and all seven Rhizopus species were able to convert ZEN into various metabolites, including ZEN-14-sulfate as well as ZEN-O-14- and ZEN-O-16-glucoside. Microbial transformation of ZEN into the significantly more estrogenic α-zearalenol (α-ZEL) was also observed. Additionally, a novel fungal metabolite, α-ZEL-sulfate, was detected. Semi-quantification of the main metabolites indicates that more than 50% of initial ZEN may be modified. The results show that fungal strains have the potential to convert ZEN into various metabolites leading to a masking of the toxin, for example in fermented food. KW - Microbial conversion KW - Metabolites KW - Fermentation KW - Alpha-zearalenol KW - Conjugation KW - Mycotoxin biotransformation KW - Zearalenone-sulfate PY - 2014 U6 - https://doi.org/10.1111/1574-6968.12586 SN - 0378-1097 SN - 1574-6968 VL - 359 IS - 1 SP - 124 EP - 130 PB - Wiley-Blackwell CY - Malden, Mass., USA AN - OPUS4-31636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweikhard, E.S. A1 - Kuhlmann, S.I. A1 - Kunte, Hans-Jörg A1 - Grammann, K. A1 - Ziegler, C. M. T1 - Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of halomonas elongata DSM 2581T N2 - The halophilic bacterium Halomonas elongata takes up the compatible solute ectoine via the osmoregulated TRAP transporter TeaABC. A fourth orf (teaD) is located adjacent to the teaABC locus that encodes a putative universal stress protein (USP). By RT-PCR experiments we proved a cotranscription of teaD along with teaABC. Deletion of teaD resulted in an enhanced uptake for ectoine by the transporter TeaABC and hence a negative activity regulation of TeaABC by TeaD. A transcriptional regulation via DNA binding could be excluded. ATP binding to native TeaD was shown by HPLC, and the crystal structure of TeaD was solved in complex with ATP to a resolution of 1.9 Å by molecular replacement. TeaD forms a dimer–dimer complex with one ATP molecule bound to each monomer, which has a Rossmann-like α/β overall fold. Our results reveal an ATP-dependent oligomerization of TeaD, which might have a functional role in the regulatory mechanism of TeaD. USP-encoding orfs, which are located adjacent to genes encoding for TeaABC homologues, could be identified in several other organisms, and their physiological role in balancing the internal cellular ectoine pool is discussed. PY - 2010 U6 - https://doi.org/10.1021/bi9017522 SN - 0006-2960 SN - 1520-4995 VL - 49 IS - 10 SP - 2194 EP - 2204 PB - ACS Publ. CY - Washington, DC AN - OPUS4-21915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunte, Hans-Jörg A1 - Lentzen, G. A1 - Galinski, E. T1 - Industrial production of the cell protectant ectoine: protection mechanisms, processes, and products N2 - Bacteria, Archaea and Eukarya can adapt to Saline environments by accumulating compatible solutes in order to maintain an osmotic equilibrium. Compatible solutes are of diverse chemical structure (sugars, polyols, amino acid derivatives) and are beneficial for bacterial cells not only as osmoregulatory solutes, but also as protectants of proteins by mitigating detrimental effects of freezing, drying and high temperatures. The aspartate derivative ectoine is a wide spread compatible solute in Bacteria and possesses additional protective properties compared with other compatible solutes, and stabilizes even whole cells against stresses such as UV radiation or cytotoxins. The protective properties of ectoine for proteins can be explained by its strong (kosmotropic) interaction with water and subsequent exclusion from Protein surface, the decrease of the solubility of the peptide backbone and the strengthening of intramolecular hydrogen bonds (secondary structures). The stabilizing and UV-protective properties of ectoine attracted industry, which saw the potential to market ectoine as a novel active component in health care products and cosmetics. In joint efforts of industry and research large-scale fermentation procedures have been developed with the halophilic bacterium Halomonas elongata used as a producer strain. The two key technologies that allow for the annual production of ectoine on a scale of tons are the bacterial milking procedure and the development and application of ectoine-excreting mutants (“leaky” mutant). The details of these two procedures including the strain development and Fermentation processes will be introduced and current and future applications of ectoine will be discussed. KW - Bacterial milking KW - Batch fermentation KW - Continuous culture KW - Ectoine excretion KW - Hofmeister effect KW - Kosmotrope KW - “leaky” mutant KW - Osmophobic effect KW - Protein protection KW - Preferential exclusion PY - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-376805 SN - 2211-551X VL - 3 IS - 1 SP - 10 EP - 25 PB - Bentham Science AN - OPUS4-37680 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Marinelli, F. A1 - Kuhlmann, S. I. A1 - Grell, E. A1 - Kunte, Hans-Jörg A1 - Ziegler, C. M. A1 - Faraldo-Gómez, J. D. T1 - Evidence for an allosteric mechanism of substrate release from membrane-transporter accessory binding proteins N2 - Numerous membrane importers rely on accessory water-soluble proteins to capture their substrates. These substrate-binding Proteins (SBP) have a strong affinity for their ligands; yet, Substrate release onto the low-affinity membrane transporter must occur for uptake to proceed. It is generally accepted that release is facilitated by the association of SBP and transporter, upon which the SBP adopts a conformation similar to the unliganded state, whose affinity is sufficiently reduced. Despite the appeal of this mechanism, however, direct supporting evidence is lacking. Here, we use experimental and theoretical methods to demonstrate that an allosteric mechanism of enhanced substrate release is indeed plausible. First, we report the atomic-resolution structure of APO TeaA, the SBP of the Na!-coupled ectoine TRAP transporter TeaBC from Halomonas elongata DSM2581T, and compare it with the substrate-bound structure previously reported. Conformational freeenergy landscape calculations based upon molecular Dynamics simulations are then used to dissect the mechanism that couples ectoine binding to structural change in TeaA. These insights allow us to design a triple mutation that biases TeaA toward apo-like conformations without directly perturbing the binding cleft, thus mimicking the influence of the membrane transporter. Calorimetric measurements demonstrate that the ectoine affinity of the conformationally biased triple mutant is 100-fold weaker than that of the wild type. By contrast, a control mutant predicted to be conformationally unbiased displays wild-type affinity. This work thus demonstrates that substrate release from SBPs onto their Membrane transporters can be facilitated by the latter through a mechanism of allosteric modulation of the former. KW - Binding thermodynamics KW - Periplasmic binding protein KW - Secondary transporter KW - ABC transporter KW - Replica-exchange metadynamics PY - 2011 U6 - https://doi.org/10.1073/pnas.1112534108 SN - 0027-8424 SN - 1091-6490 VL - 108 IS - 49 SP - E1285 EP - E1292 AN - OPUS4-37681 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweikhard, E. S. A1 - Kuhlmann, S. I. A1 - Kunte, Hans-Jörg A1 - Grammann, K. A1 - Ziegler, C. M. T1 - Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of halomonas elongata DSM 2581T N2 - The halophilic bacterium Halomonas elongata takes up the compatible solute ectoine via the osmoregulated TRAP transporter TeaABC. A fourth orf (teaD) is located adjacent to the teaABC locus that encodes a putative universal stress protein (USP). By RT-PCR experiments we proved a cotranscription of teaD along with teaABC. Deletion of teaD resulted in an enhanced uptake for ectoine by the Transporter TeaABC and hence a negative activity regulation of TeaABC by TeaD. Atranscriptional regulation viaDNA binding could be excluded. ATP binding to native TeaD was shown by HPLC, and the Crystal structure of TeaD was solved in complex with ATP to a resolution of 1.9 A ° by molecular replacement. TeaD forms a dimer-dimer complex with one ATP molecule bound to each monomer, which has a Rossmann-like R/β overall fold. Our results reveal an ATP-dependent oligomerization of TeaD, which might have a functional role in the regulatory mechanism of TeaD. USP-encoding orfs, which are located adjacent to genes Encoding for TeaABC homologues, could be identified in several other organisms, and their physiological role in balancing the internal cellular ectoine pool is discussed. KW - Universal stress protein KW - Ectoine KW - Transporter TeaABC PY - 2010 U6 - https://doi.org/10.1021/bi9017522 SN - 1520-4995 SN - 0006-2960 VL - 49 IS - 10 SP - 2194 EP - 2204 AN - OPUS4-37682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuhne, Maren A1 - Dippong, Martin A1 - Flemig, Sabine A1 - Hoffmann, Katrin A1 - Petsch, K. A1 - Schenk, J.A. A1 - Kunte, Hans-Jörg A1 - Schneider, Rudolf T1 - Comparative characterization of mAb producing hapten-specific hybridoma cells by flow cytometric analysis and ELISA N2 - A novel method that optimizes the screening for antibody-secreting hapten-specific hybridoma cells by using flow cytometry is described. Cell clones specific for five different haptens were analyzed. We selectively double stained and analyzed fixed hybridoma cells with fluorophore-labeled haptens to demonstrate the target-selectivity, and with a fluorophore-labeled anti-mouse IgG antibody to characterize the level of surface expression of membrane-bound IgGs. ELISA measurements with the supernatants of the individual hybridoma clones revealed that antibodies from those cells, which showed the highest fluorescence intensities in the flow cytometric analysis, also displayed the highest affinities for the target antigens. The fluorescence intensity of antibody-producing cells corresponded well with the produced antibodies' affinities toward their respective antigens. Immunohistochemical staining verified the successful double labeling of the cells. Our method makes it possible to perform a high-throughput screening for hybridoma cells, which have both an adequate IgG production rate and a high target affinity. KW - Immunization KW - Hapten KW - Monoclonal antibodies KW - Hybridoma KW - Flow cytometry KW - ELISA KW - Estradiol KW - Estrone KW - Digoxigenin KW - Zearalenone KW - Aflatoxin KW - CLSM PY - 2014 U6 - https://doi.org/10.1016/j.jim.2014.07.004 SN - 0022-1759 SN - 1872-7905 VL - 413 SP - 45 EP - 56 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-32322 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -