TY - JOUR A1 - Wittmar, J. A1 - Meyer, Susann A1 - Sieling, T. A1 - Kunte, Hans-Jörg A1 - Smiatek, Jens A1 - Brand, Izabella T1 - What Does Ectoine Do to DNA? A Molecular-Scale Picture of Compatible Solute−Biopolymer Interactions JF - The Journal of Physical Chemistry N2 - Compatible solutes are accumulated in the cytoplasm of halophilic microorganisms. These molecules enable their survival in a high salinity environment. Ectoine is such a compatible solute. It is a zwitterionic molecule which strongly interacts with surrounding water molecules and changes the dynamics of the local hydration shell. Ectoine interacts with biomolecules such as lipids, proteins and DNA. The molecular interaction between ectoine and biomolecules in particular the interaction between ectoine and DNA is far from being understood. In this paper we describe molecular aspects of the interaction between ectoine and double stranded DNA(dsDNA). Two 20 base pairs long dsDNA fragments were immobilized on a Gold surface via a thiol-tether. The interaction between the dsDNA monolayers with diluted and concentrated ectoine solutions was examined by means of X-ray photoelectron and polarization modulation infrared reflection absorption spectroscopies (PM IRRAS). Experimental results indicate that the ability of ectoine to bind water reduces the strength of hydrogen bonds formed to the ribose-phosphate backbone in the dsDNA. In diluted (0.1 M) ectoine solution, DNA interacts predominantly with water molecules. The sugar-phosphate backbone is involved in the formation of strong hydrogen bonds to water, which with elapsing time leads to a reorientation of the planes of nucleic acid bases. This reorientation destabilizes the hydrogen bonds strength between the bases and leads to a partial dehybridizaiton of the dsDNA. In concentrated ectoine solution (2.5 M), almost all water molecules interact with ectoine. Under this condition ectoine is able to interact directly with DNA. Density functional theory (DFT) calculations demonstrate that the direct interaction involves the nitrogen atoms in ectoine and phosphate groups in the DNA molecule. The results of the quantum chemical calculations Show that rearrangements in the ribose-phosphate backbone, caused by a direct interaction with ectoine, facilitates contacts between O atom in the phosphate group and H atoms in a nucleic acid base. In the PM IRRA spectra, an increase in the number of the IR absorption modes in the base pair frequency region proves that the hydrogen bonds between bases become weaker. Thus, a sequence of reorientations caused by interaction with ectoine leads to a breakdown of hydrogen bonds between bases in the double helix. KW - Compatible solute KW - Ectoine KW - DNA KW - Self-assembled monolayer KW - IR spectroscopy KW - XPS PY - 2020 DO - https://doi.org/10.1021/acs.jpcb.0c05273 VL - 124 IS - 37 SP - 7999 EP - 8011 PB - ACS Publicatios AN - OPUS4-51182 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - He, Shulin A1 - Johnston, P. R. A1 - Kuropka, B. A1 - Lokatis, S. A1 - Weise, C. A1 - Plarre, Rüdiger A1 - Kunte, Hans-Jörg A1 - McMahon, Dino Peter T1 - Termite soldiers contribute to social immunity by synthesizing potent oral secretions JF - Insect Molecular Biology N2 - The importance of soldiers to termite Society defence has long been recognized, but the contribution of soldiers to other societal functions, such as colony immunity, is less well understood. We explore this issue by examining the role of soldiers in protecting nestmates against pathogen infection. Even though they are unable to engage in grooming behaviour, we find that the presence of soldiers of the Darwin termite, Mastotermes darwiniensis, significantly improves the survival of nestmates following entomopathogenic infection. We also show that the copious exocrine oral secretions produced by Darwin termite soldiers contain a high concentration of Proteins involved in digestion, chemical biosynthesis, and immunity. The oral secretions produced by soldiers are sufficient to protect nestmates against infection, and they have potent inhibitory activity against a broad spectrum of microbes. Our findings support the view that soldiers may play an important role in colony immunity, and broaden our understanding of the possible function of soldiers during the origin of soldier-first societies. KW - External KW - Social KW - Immunity KW - Soldier KW - Antimicrobial KW - Proteome PY - 2018 DO - https://doi.org/10.1111/imb.12499 SN - 1365-2583 SN - 0962-1075 VL - 27 IS - 5 SP - 564 EP - 576 PB - Wiley-Blackwell CY - Oxford AN - OPUS4-45726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweikhard, E.S. A1 - Kuhlmann, S.I. A1 - Kunte, Hans-Jörg A1 - Grammann, K. A1 - Ziegler, C. M. T1 - Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of halomonas elongata DSM 2581T JF - Biochemistry N2 - The halophilic bacterium Halomonas elongata takes up the compatible solute ectoine via the osmoregulated TRAP transporter TeaABC. A fourth orf (teaD) is located adjacent to the teaABC locus that encodes a putative universal stress protein (USP). By RT-PCR experiments we proved a cotranscription of teaD along with teaABC. Deletion of teaD resulted in an enhanced uptake for ectoine by the transporter TeaABC and hence a negative activity regulation of TeaABC by TeaD. A transcriptional regulation via DNA binding could be excluded. ATP binding to native TeaD was shown by HPLC, and the crystal structure of TeaD was solved in complex with ATP to a resolution of 1.9 Å by molecular replacement. TeaD forms a dimer–dimer complex with one ATP molecule bound to each monomer, which has a Rossmann-like α/β overall fold. Our results reveal an ATP-dependent oligomerization of TeaD, which might have a functional role in the regulatory mechanism of TeaD. USP-encoding orfs, which are located adjacent to genes encoding for TeaABC homologues, could be identified in several other organisms, and their physiological role in balancing the internal cellular ectoine pool is discussed. PY - 2010 DO - https://doi.org/10.1021/bi9017522 SN - 0006-2960 SN - 1520-4995 VL - 49 IS - 10 SP - 2194 EP - 2204 PB - ACS Publ. CY - Washington, DC AN - OPUS4-21915 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schweikhard, E. S. A1 - Kuhlmann, S. I. A1 - Kunte, Hans-Jörg A1 - Grammann, K. A1 - Ziegler, C. M. T1 - Structure and function of the universal stress protein TeaD and its role in regulating the ectoine transporter TeaABC of halomonas elongata DSM 2581T JF - Biochemistry N2 - The halophilic bacterium Halomonas elongata takes up the compatible solute ectoine via the osmoregulated TRAP transporter TeaABC. A fourth orf (teaD) is located adjacent to the teaABC locus that encodes a putative universal stress protein (USP). By RT-PCR experiments we proved a cotranscription of teaD along with teaABC. Deletion of teaD resulted in an enhanced uptake for ectoine by the Transporter TeaABC and hence a negative activity regulation of TeaABC by TeaD. Atranscriptional regulation viaDNA binding could be excluded. ATP binding to native TeaD was shown by HPLC, and the Crystal structure of TeaD was solved in complex with ATP to a resolution of 1.9 A ° by molecular replacement. TeaD forms a dimer-dimer complex with one ATP molecule bound to each monomer, which has a Rossmann-like R/β overall fold. Our results reveal an ATP-dependent oligomerization of TeaD, which might have a functional role in the regulatory mechanism of TeaD. USP-encoding orfs, which are located adjacent to genes Encoding for TeaABC homologues, could be identified in several other organisms, and their physiological role in balancing the internal cellular ectoine pool is discussed. KW - Universal stress protein KW - Ectoine KW - Transporter TeaABC PY - 2010 DO - https://doi.org/10.1021/bi9017522 SN - 1520-4995 SN - 0006-2960 VL - 49 IS - 10 SP - 2194 EP - 2204 AN - OPUS4-37682 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfeiffer, F. A1 - Bagyan, I. A1 - Alfaro Espinoza, Gabriela A1 - Zamora-Lagos, M.-A. A1 - Habermann, B. A1 - Marin-Sanguino, A. A1 - Oesterhelt, D. A1 - Kunte, Hans-Jörg T1 - Revision and reannotation of the Halomonas elongata DSM 2581(T) genome JF - MicrobiologyOpen N2 - The genome of the Halomonas elongata type strain DSM 2581, an industrial producer, was reevaluated using the Illumina HiSeq2500 technology. To resolve duplication-associated ambiguities, PCR products were generated and sequenced. Outside of duplications, 72 sequence corrections were required, of which 24 were point mutations and 48 were indels of one or few bases. Most of these were associated with polynucleotide stretches (poly-T stretch overestimated in 19 cases, poly-C underestimated in 15 cases). These problems may be attributed to using 454 technology for original Genome sequencing. On average, the original genome sequence had only one error in 56 kb. There were 23 frameshift error corrections in the 29 protein-coding genes affected by sequence revision. The genome has been subjected to major reannotation in order to substantially increase the annotation quality. KW - Frameshift KW - Genome annotation KW - Genome sequencing KW - Halomonas elongata KW - Halophilic bacteria KW - Sequence revision PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-403292 DO - https://doi.org/10.1002/mbo3.465 SN - 2045-8827 VL - 6 IS - 4 SP - Article e465, 1 EP - 6 PB - Wiley AN - OPUS4-40329 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kraegeloh, A. A1 - Amendt, B. A1 - Kunte, Hans-Jörg T1 - Potassium Transport in a Halophilic Member of the Bacteria Domain: Identification and Characterization of the K+ Uptake Systems TrkH and TrkI from Halomonas elongata DSM 2581T JF - Journal of bacteriology N2 - The halophilic bacterium Halomonas elongata accumulates K+, glutamate, and the compatible solute ectoine as osmoprotectants. By functional complementation of Escherichia coli mutants defective in K+ uptake, we cloned three genes that are required for K+ uptake in H. elongata. Two adjacent genes, named trkA (1,374 bp) and trkH (1,449 bp), were identified on an 8.5-kb DNA fragment, while a third gene, called trkI (1,479 bp), located at a different site in the H. elongata chromosome, was found on a second 8.5-kb fragment. The potential protein expressed by trkA is similar to the cytoplasmic NAD+/NADH binding protein TrkA from E. coli, which is required for the activity of the Trk K+ uptake system. The deduced amino acid sequences of trkH and trkI showed significant identity to the transmembrane protein of Trk transporters. K+ transport experiments with trkH and trkI mutants of H. elongata revealed that TrkI exhibits a Km value of 1.12 mM, while the TrkH system has a half-saturation constant of 3.36 mM. Strain KB12, relying on TrkH alone, accumulated K+ with a lower Vmax and required a higher K+ concentration for growth in highly saline medium than the wild type. Strain KB15, expressing only TrkI, showed the same phenotype and the same K+ transport kinetics as the wild type, proving that TrkI is the main K+ transport system in H. elongata. In the absence of both transporters TrkH and TrkI, K+ accumulation was not detectable. K+ transport was also abolished in a trkA deletion mutant, indicating that TrkI and TrkH depend on one type of TrkA protein. Reverse transcriptase PCR experiments and Northern hybridization analyses of the trkAH locus revealed cotranscription of trkAH as well as a monocistronic transcript with only trkA. KW - Potassium transport KW - Osmoregulation KW - Halophilic Bacteria KW - Halomonas elongata KW - TrkH KW - TrkA PY - 2005 DO - https://doi.org/10.1128/JB.187.3.1036-1043.2005 SN - 0021-9193 SN - 1098-5530 VL - 187 IS - 3 SP - 1036 EP - 1043 PB - American Society for Microbiology CY - Washington, DC AN - OPUS4-6294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kindzierski, V. A1 - Raschke, Silvia A1 - Knabe, Nicole A1 - Siedler, F. A1 - Scheffer, B. A1 - Pflüger-Grau, K. A1 - Pfeiffer, F. A1 - Oesterhelt, D. A1 - Marin-Sanguino, A. A1 - Kunte, Hans-Jörg T1 - Osmoregulation in the halophilic bacterium halomonas elongata: A case study for integrative systems biology JF - PLoS ONE N2 - Halophilic bacteria use a variety of osmoregulatory methods, such as the accumulation of one or more compatible solutes. The wide diversity of compounds that can act as compatible solute complicates the task of understanding the different strategies that halophilic bacteria use to cope with salt. This is specially challenging when attempting to go beyond the pathway that produces a certain compatible solute towards an understanding of how the metabolic network as a whole addresses the problem. Metabolic reconstruction based on genomic data together with Flux Balance Analysis (FBA) is a promising tool to gain insight into this problem. However, as more of these reconstructions become available, it becomes clear that processes predicted by genome annotation may not reflect the processes that are active in vivo. As a case in point, E. coli is unable to grow aerobically on citrate in spite of having all the necessary genes to do it. It has also been shown that the realization of this genetic potential into an actual capability to metabolize citrate is an extremely unlikely event under normal evolutionary conditions. Moreover, many marine bacteria seem to have the same pathways to metabolize glucose but each species uses a different one. In this work, a metabolic network inferred from genomic annotation of the halophilic bacterium Halomonas elongata and proteomic profiling experiments are used as a starting point to motivate targeted experiments in order to find out some of the defining features of the osmoregulatory strategies of this bacterium. This new information is then used to refine the network in order to describe the actual capabilities of H. elongata, rather than its genetic potential. KW - Halomonas elongata KW - Systems biology KW - Flux balance analysis KW - Proteomic analysis PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-391172 DO - https://doi.org/10.1371/journal.pone.0168818 SN - 1932-6203 VL - 12 IS - 1 SP - Article e0168818, 1 EP - 22 AN - OPUS4-39117 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kunte, Hans-Jörg T1 - Osmoregulation in Bacteria: Compatible Solute Accumulation and Osmosensing JF - Environmental chemistry N2 - Bacteria and Archaea have developed two basic mechanisms to cope with osmotic stress, the salt-in-cytoplasm mechanism, and the organic-osmolyte mechanism. Organic osmolytes or so-called compatible solutes can be accumulated in molar concentration in the cytoplasm and allow for the adaptation of bacterial cells to varying salt concentrations. The biosynthetic pathways of compatible solutes and different compatible solute transport systems are described. A model for osmoregulatory compatible solute accumulation is introduced. KW - Archaea KW - Compatible solutes KW - Halophilic KW - Halotolerant KW - Osmoregulated transporter PY - 2006 DO - https://doi.org/10.1071/EN06016 SN - 1448-2517 SN - 1449-8979 VL - 3 IS - 2 SP - 94 EP - 99 PB - CSIRO Publishing CY - Collingwood, Vic. AN - OPUS4-14258 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hobmeier, K. A1 - Oppermann, M. A1 - Stasinski, N. A1 - Kremling, A. A1 - Pflüger-Grau, K. A1 - Kunte, Hans-Jörg A1 - Marin Sanguino, A. T1 - Metabolic engineering of Halomonas elongata: Ectoine secretion is increased by demand and supply driven approaches JF - Frontiers in Microbiology N2 - The application of naturally-derived biomolecules in everyday products, replacing conventional synthetic manufacturing, is an ever-increasing market. An example of this is the compatible solute ectoine, which is contained in a plethora of treatment formulations for medicinal products and cosmetics. As of today, ectoine is produced in a scale of tons each year by the natural producer Halomonas elongata. In this work, we explore two complementary approaches to obtain genetically improved producer strains for ectoine production. We explore the effect of increased precursor supply (oxaloacetate) on ectoine production, as well as an implementation of increased ectoine demand through the overexpression of a transporter. Both approaches were implemented on an already genetically modified ectoine-excreting strain H. elongata KB2.13 (ΔteaABC ΔdoeA) and both led to new strains with higher ectoine excretion. The supply driven approach led to a 45% increase in ectoine titers in two different strains. This increase was attributed to the removal of phosphoenolpyruvate carboxykinase (PEPCK), which allowed the conversion of 17.9% of the glucose substrate to ectoine. For the demand driven approach, we investigated the potential of the TeaBC transmembrane proteins from the ectoine-specific Tripartite ATP-Independent Periplasmic (TRAP) transporter as export channels to improve ectoine excretion. In the absence of the substrate-binding protein TeaA, an overexpression of both subunits TeaBC facilitated a three-fold increased excretion rate of ectoine. Individually, the large subunit TeaC showed an approximately five times higher extracellular ectoine concentration per dry weight compared to TeaBC shortly after its expression was induced. However, the detrimental effect on growth and ectoine titer at the end of the process hints toward a negative impact of TeaC overexpression on membrane integrity and possibly leads to cell lysis. By using either strategy, the ectoine synthesis and excretion in H. elongata could be boosted drastically. The inherent complementary nature of these approaches point at a coordinated implementation of both as a promising strategy for future projects in Metabolic Engineering. Moreover, a wide variation of intracelllular ectoine levels was observed between the strains, which points at a major disruption of mechanisms responsible for ectoine regulation in strain KB2.13. KW - Osmoadaptation KW - Metabolic engineering PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-555644 DO - https://doi.org/10.3389/fmicb.2022.968983 SN - 1664-302X VL - 13 SP - 1 EP - 13 PB - Frontiers Media CY - Lausanne AN - OPUS4-55564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hahn, Marc Benjamin A1 - Meyer, Susann A1 - Kunte, Hans-Jörg A1 - Solomun, Tihomir A1 - Sturm, Heinz T1 - Measurements and simulations of microscopic damage to DNA in water by 30 keV electrons: A general approach applicable to other radiation sources and biological targets JF - Physical Review E N2 - The determination of the microscopic dose-damage relationship for DNA in an aqueous environment is of a fundamental interest for dosimetry and applications in radiation therapy and protection. We combine geant4 particle-scattering simulations in water with calculations concerning the movement of biomolecules to obtain the energy deposit in the biologically relevant nanoscopic volume. We juxtaposition these results to the experimentally determined damage to obtain the dose-damage relationship at a molecular level. This approach is tested for an experimentally challenging system concerning the direct irradiation of plasmid DNA (pUC19) in water with electrons as primary particles. Here a microscopic target model for the plasmid DNA based on the relation of lineal energy and radiation quality is used to calculate the effective target volume. It was found that on average fewer than two ionizations within a 7.5-nm radius around the sugar-phosphate backbone are sufficient to cause a single strand break, with a corresponding median lethal energy deposit being E1/2=6±4 eV. The presented method is applicable for ionizing radiation (e.g., γ rays, x rays, and electrons) and a variety of targets, such as DNA, proteins, or cells. KW - DNA KW - Radiation damage KW - Dosimetry KW - DNA radiation damage KW - Single-strand break (SSB) KW - Double-strand break (DSB) KW - Low energy electrons KW - Monte Carlo simulation KW - Radiation damage to biomolecules KW - Plasmid DNA in water KW - Lethal dose KW - Solutions (pH, salinity, cosolutes) KW - Geant4 KW - Microdosimetry PY - 2017 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-404244 DO - https://doi.org/10.1103/PhysRevE.95.052419 SN - 2470-0045 SN - 2470-0053 VL - 95 IS - 5 SP - 052419-1 EP - 052419-8 PB - American Physical Society CY - USA AN - OPUS4-40424 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -