TY - JOUR A1 - Lange, Nele A1 - Dietrich, Paul M. A1 - Lippitz, Andreas A1 - Kulak, N. A1 - Unger, Wolfgang T1 - New azidation methods for the functionalization of silicon nitride and application in copper-catalyzed azide-alkyne cycloaddition (CuAAC) N2 - In this study, a new direct functionalization method of silicon nitride (Si3N4) using azidation and click chemistry is presented. First, amino groups (NHx) were created on a Si3N4 substrate by fluoride etching. These NHx-terminated Si3N4 surfaces were analyzed by chemical derivatization X-ray photoelectron spectroscopy (CD-XPS) with 4-trifluoromethylbenzaldehyde (TFBA) and a derivatization yield of 20% was concluded. In the second step freshly prepared NHx surfaces were transformed into azides which were used immediately in a click reaction with halogenated alkynes. The presented combination of amination, azidation and click reaction is a promising alternative for common silane-based Si3N4 functionalization methods. T2 - 16th European Conference on Applications of Surface and Interface Analysis CY - Granada, Spain DA - 28.09.2015 KW - XPS KW - Azidation KW - Click chemistry KW - Silicon nitride KW - Chemical derivatization PY - 2016 UR - http://onlinelibrary.wiley.com/doi/10.1002/sia.5950/full U6 - https://doi.org/10.1002/sia.5950 VL - 48 SP - 621 EP - 625 PB - John Wiley & Sons, Ltd AN - OPUS4-36841 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dietrich, Paul A1 - Glamsch, Stephan A1 - Ehlert, Christopher A1 - Lippitz, Andreas A1 - Kulak, N. A1 - Unger, Wolfgang T1 - Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon N2 - The analysis of chemical and elemental in-depth variations in ultra-thin organic layers with thicknesses below 5 nm is very challenging. Energy- and angle-resolved XPS (ER/AR-XPS) opens up the possibility for non-destructive chemical ultra-shallow depth profiling of the outermost surface layer of ultra-thin organic films due to its exceptional surface sensitivity. For common organic materials a reliable chemical in-depth analysis with a lower limit of the XPS information depth z95 of about 1 nm can be performed. As a proof-of-principle example with relevance for industrial applications the ER/AR-XPS analysis of different organic monolayers made of amino- or benzamidosilane molecules on silicon oxide surfaces is presented. It is demonstrated how to use the Si 2p core-level region to non-destructively depth-profile the organic (silane monolayer) – inorganic (SiO2/Si) interface and how to quantify Si species, ranging from elemental silicon over native silicon oxide to the silane itself. The main advantage of the applied ER/AR-XPS method is the improved specification of organic from inorganic silicon components in Si 2p core-level spectra with exceptional low uncertainties compared to conventional laboratory XPS. KW - Synchrotron radiation XPS KW - Depth profiling KW - Silanes KW - Monolayer KW - Amines KW - Amides PY - 2016 U6 - https://doi.org/10.1016/j.apsusc.2015.12.052 SN - 0169-4332 SN - 1873-5584 VL - 363 SP - 406 EP - 411 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-35262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -