TY - JOUR A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Gerwien, Peter A1 - Kucharczyk, P. A1 - Münstermann, S. A1 - Schork, B. T1 - Fracture-mechanics-based prediction of the fatigue strength of weldments. Material aspects JF - Engineering fracture mechanics N2 - Any fracture mechanics based determination of the fatigue strength of weldments requires different input information such as the local weld geometry and material data of the areas the crack is passing through during its propagation. The latter is so far not a trivial task as the fatigue crack is usually initiated at the weld toe at the transition from the weld metal to the heat affected zone and it subsequently propagates through the different microstructures of the latter to eventually grow into the base material and to cause final fracture. This paper describes how the material input information has gained particularly for heat affected zone material by thermo-mechanically simulated material specimens for two steels of quite different static strength. The data comprise the cyclic stress-strain curve, the crack closure effect-corrected crack growth characteristics, long crack fatigue crack propagation thresholds, the dependency of the parameter on the crack length and monotonic fracture resistance. The substantial experimental effort was necessary for the validation exercises of the IBESS approach, however, within the scope of practical application more easily applicable estimating methods are required. For that purpose the paper provides a number of appropriate proposals in line with its check against the reference data from the elaborate analyses. KW - Heat affected zone KW - Cyclic stress-strain curve KW - Fatigue crack propagation KW - Fatigue crack propagation threshold KW - Fracture resistance PY - 2018 DO - https://doi.org/10.1016/j.engfracmech.2017.09.010 SN - 0013-7944 SN - 1873-7315 VL - 198 SP - 79 EP - 102 PB - Elsevier AN - OPUS4-46854 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - BOOK A1 - Zerbst, Uwe A1 - Madia, Mauro A1 - Schork, B. A1 - Hensel, J. A1 - Kucharczyk, P. A1 - Ngoula, D. A1 - Tchuindjang, D. A1 - Bernhard, J. A1 - Beckmann, C. T1 - The IBESS approach for the determination of the fatigue life and strength of weldments by fracture mechanics analysis T3 - Fatigue and Fracture of Weldments N2 - This book provides a comprehensive and thorough guide to those readers who are lost in the often-confusing context of weld fatigue. It presents straightforward information on the fracture mechanics and material background of weld fatigue, starting with fatigue crack initiation and short cracks, before moving on to long cracks, crack closure, crack growth and threshold, residual stress, stress concentration, the stress intensity factor, J-integral, multiple cracks, weld geometries and defects, microstructural parameters including HAZ, and cyclic stress-strain behavior. The book treats all of these essential and mutually interacting parameters using a unique form of analysis. KW - Fatigue crack propagation KW - Cyclic J-integral KW - Cyclic R-curve analysis KW - Fatigue S-N curve KW - HAZ PY - 2019 SN - 978-3-030-04072-7 SN - 978-3-030-04073-4 DO - https://doi.org/10.1007/978-3-030-04073-4 SP - 1 EP - 130 PB - Springer CY - Cham AN - OPUS4-47576 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -