TY - CONF A1 - Bismarck, A. A1 - Carreyette, S. A1 - Fontana, Q.P.V. A1 - Greenhalgh, E.S. A1 - Jacobsson, P. A1 - Johansson, P. A1 - Marczewski, M.J. A1 - Kalinka, Gerhard A1 - Kucernak, A. A1 - Shaffer, M.S. A1 - Shirshova, N. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Multifunctional epoxy resin for structural supercapacitors N2 - Polymer-based electrolytes based on commercially available epoxy resins were prepared through the addition of a liquid electrolyte, a solution of a lithium salt in an ionic liquid. The polymer monoliths were characterized using impedance spectroscopy, 3-point bending test, scanning electron microscopy (SEM) and nitrogen adsorption (BET). The balance of ionic conductivity and flexural modulus is crucially dependent on the relative proportions of epoxy resin to electrolyte. Also the effect of the liquid electrolyte on curing kinetics and processing was assessed by complex viscosity measurements and differential scanning calorimetry (DSC). Only one out of the three resins investigated exhibited a significant acceleration effect. T2 - ECCM15 - 15th European conference on composite materials CY - Venice, Italy DA - 2012-06-24 KW - Multifunctional epoxy KW - Polymer electrolyte KW - Morphology KW - Ionic liquid PY - 2012 SN - 978-88-88785-33-2 SP - 1 EP - 8(?) AN - OPUS4-28694 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Greenhalgh, E.S. A1 - Ankersen, J. A1 - Asp, L. E. A1 - Bismarck, A. A1 - Fontana, Q.P.V. A1 - Houlle, M. A1 - Kalinka, Gerhard A1 - Kucernak, A. A1 - Mistry, M. A1 - Nguyen, S. A1 - Qian, H. A1 - Shaffer, M.S.P. A1 - Shirshova, N. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Mechanical and microstructural characterisation of multifunctional structural power composites N2 - Although the inherent anisotropy of polymer composites has presented daunting technical challenges, these materials now offer engineers considerable opportunities for efficient structural design. More recently, the advent of multifunctional composites which can fulfill more than one role within a system has attracted considerable interest, providing designers with exciting opportunities to innovate. Of particular interest here are structural power composites, which simultaneously carry mechanical load whilst storing/delivering electrical energy. Although the development of these composites is highly challenging, often with conflicting constituent requirements, the STORAGE consortium has had considerable success in the development of these materials for automotive applications. The focus of this paper is structural supercapacitors, the basic architecture of a single cell of which is shown in Fig. 1. This entails two carbon fibre woven lamina (electrodes) which sandwich a glass fibre woven lamina (separator), all of which is embedded within a multifunctional matrix (electrolyte). This architecture has been the focus of the research to date, leading to components such as that shown in Fig.1 having been fabricated. This paper reports on the mechanical properties and microstructures of the different reinforcement and matrix combinations for structural supercapacitors. T2 - ICCM19 - 19th International conference on composite materials CY - Montreal, Canada DA - 28.07.2013 KW - Structural electrolyte KW - Multifunctional supercapacitor KW - Fractography KW - Ionic conductivity KW - Mechanical properties PY - 2013 SP - 2228 EP - 2237 AN - OPUS4-29272 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shirshova, N. A1 - Bismarck, A. A1 - Carreyette, S. A1 - Fontana, Q.P.V. A1 - Greenhalgh, E.S. A1 - Jacobsson, P. A1 - Johansson, P. A1 - Marczewski, M.J. A1 - Kalinka, Gerhard A1 - Kucernak, A.R.J. A1 - Scheers, J. A1 - Shaffer, M.S.P. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Structural supercapacitor electrolytes based on bicontinuous ionic liquid-epoxy resin systems N2 - 'Structural electrolytes' retain the desirable mechanical characteristics of structural (epoxy) resins whilst introducing sufficient ionic conductivity to operate as electrolytes in electrochemical devices. Here, a series of ionic liquid–epoxy resin composites were prepared to identify the optimum system microstructure required to achieve a high level of multifunctionality. The ionic conductivity, mechanical properties, thermal stability and morphology of the cured epoxy based structural electrolytes were studied as a function of phase composition for three fully formulated high performance structural epoxy systems. At only 30 wt% of structural resin and 70 wt% of ionic liquid based electrolyte, stiff monolithic plaques with thicknesses of 2–3 mm were obtained with a room temperature ionic conductivity of 0.8 mS cm-1 and a Young's modulus of 0.2 GPa. This promising performance can be attributed to a long characteristic length scale spinodal microstructure, suggesting routes to further optimisation in the future. KW - Epoxy KW - Ionic liquid KW - Supercapacitor PY - 2013 U6 - https://doi.org/10.1039/c3ta13163g SN - 2050-7496 SN - 2050-7488 VL - 1 IS - 48 SP - 15300 EP - 15309 PB - RSC CY - London [u.a.] AN - OPUS4-29735 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Greenhalgh, E.S. A1 - Ankersen, J. A1 - Asp, L. E. A1 - Bismarck, A. A1 - Fontana, Q.P.V. A1 - Houlle, M. A1 - Kalinka, Gerhard A1 - Kucernak, A. A1 - Mistry, M. A1 - Nguyen, S. A1 - Qian, H. A1 - Shaffer, M.S.P. A1 - Shirshova, N. A1 - Steinke, J.H.G. A1 - Wienrich, Malte T1 - Mechanical, electrical and microstructural characterisation of multifunctional structural power composites N2 - Multifunctional composites which can fulfil more than one role within a system have attracted considerable interest. This work focusses on structural supercapacitors which simultaneously carry mechanical load whilst storing/delivering electrical energy. Critical mechanical properties (in-plane shear and in-plane compression performance) of two monofunctional and four multifunctional materials were characterised, which gave an insight into the relationships between these properties, the microstructures and fracture processes. The reinforcements included baseline T300 fabric, which was then either grafted or sized with carbon nanotubes, whilst the baseline matrix was MTM57, which was blended with ionic liquid and lithium salt (two concentrations) to imbue multifunctionality. The resulting composites exhibited a high degree of matrix heterogeneity, with the ionic liquid phase preferentially forming at the fibres, resulting in poor matrix-dominated properties. However, fibre-dominated properties were not depressed. Thus, it was demonstrated that these materials can now offer weight savings over conventional monofunctional systems when under modest loading. KW - Carbon fibres KW - Functional composites KW - Mechanical properties KW - Elastic properties KW - Fractography PY - 2014 U6 - https://doi.org/10.1177/0021998314554125 SN - 0021-9983 SN - 1530-793X SP - 1 EP - 12 PB - Sage CY - London AN - OPUS4-34567 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gong, M. A1 - Mehmood, Asad A1 - Ali, B. A1 - Nam, K.-W. A1 - Kucernak, A. T1 - Oxygen Reduction Reaction Activity in Non-Precious Single-Atom (M−N/C) Catalysts − Contribution of Metal and Carbon/Nitrogen Framework-Based Sites N2 - We examine the performance of a number of single-atom M−N/C electrocatalysts with a common structure in order to deconvolute the activity of the framework N/C support from the metal M−N4 sites in M−N/Cs. The formation of the N/C framework with oordinating nitrogen sites is performed using zinc as a templating agent. After the formation of the electrically conducting carbon−nitrogen metal-coordinating network, we (trans)metalate with different metals producing a range of different catalysts (Fe−N/C, Co−N/C, Ni−N/C, Sn−N/C, Sb−N/C, and Bi−N/C) without the formation of any metal particles. In these materials, the structure of the carbon/nitrogen framework remains unchanged-only the coordinated metal is substituted. We assess the performance of the subsequent catalysts in acid, near-neutral, and alkaline environments toward the oxygen reduction reaction (ORR) and ascribe and quantify the performance to a combination of metal site activity and activity of the carbon/nitrogen framework. The ORR activity of the carbon/nitrogen framework is about 1000-fold higher in alkaline than it is in acid, suggesting a change in mechanism. At 0.80 VRHE, only Fe and Co contribute ORR activity significantly beyond that provided by the carbon/nitrogen framework at all pH values studied. In acid and near-neutral pH values (pH 0.3 and 5.2, respectively), Fe shows a 30-fold improvement and Co shows a 5-fold improvement, whereas in alkaline pH (pH 13), both Fe and Co show a 7-fold improvement beyond the baseline framework activity. The site density of the single metal atom sites is estimated using the nitrite adsorption and stripping method. This method allows us to deconvolute the framework sites and metal-based active sites. The framework site density of catalysts is estimated as 7.8 × 1018 sites g−1. The metal M−N4 site densities in Fe−N/C and Co−N/C are 9.4 × 1018 sites−1 and 4.8 × 1018 sites g−1, respectively. KW - Active site density KW - Fuel cells KW - Single-atom catalysts KW - Oxygen reduction reaction KW - PGM-free catalysts KW - M−N/Cs PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-575640 SN - 2155-5435 VL - 13 IS - 10 SP - 6661 EP - 6674 PB - American Chemical Society AN - OPUS4-57564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wu, J. A1 - Gong, M. A1 - Zhang, W. A1 - Mehmood, Asad A1 - Zhang, J. A1 - Ali, G. A1 - Kucernak, A. T1 - Simultaneously incorporating atomically dispersed Co-Nₓ sites with graphitic carbon layer-wrapped Co₉S₈ nanoparticles for oxygen reduction in acidic electrolyte N2 - A facile yet robust synthesis is reported herein to simultaneously incorporate atomically dispersed Co-Nₓ sites with graphitic layer-protected Co₉S₈ nanoparticles (denoted as Co SACs+Co₉S₈) as an efficient electrocatalyst for oxygen reduction in acidic solution. The Co SACs+Co₉S₈ catalyst shows low H₂O₂ selectivity (∼5 %) with high half-wave potential (E1/2) of ∼0.78 V(RHE) in 0.5 M H₂SO₄. The atomic sites of the catalyst were quantified by a nitrite stripping method and the corresponding site density of the catalyst is calculated to be 3.2×10¹⁸ sites g⁻¹. Besides, we also found the presence of a reasonable amount of Co₉S₈ nanoparticles is beneficial for the oxygen electrocatalysis. Finally, the catalyst was assembled into a membrane electrode assembly (MEA) for evaluating its performance under more practical conditions in proton exchange membrane fuel cell (PEMFC) system. KW - Co−N-Cs KW - Fuel cells KW - Single-atom catalysts KW - Oxygen reduction reaction KW - PGM-free catalysts PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-575993 SN - 2196-0216 VL - 10 IS - 12 SP - 1 EP - 9 PB - Wiley-VCH CY - Weinheim AN - OPUS4-57599 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -