TY - JOUR A1 - Völker, Christoph A1 - Firdous, R. A1 - Kruschwitz, Sabine A1 - Stephan, D. T1 - Sequential learning to accelerate discovery of alkali-activated binders N2 - Alkali-activated binders (AAB) can provide a clean alternative to conventional cement in terms of CO2 emissions. However, as yet there are no sufficiently accurate material models to effectively predict the AAB properties, thus making optimal mix design highly costly and reducing the attractiveness of such binders. This work adopts sequential learning (SL) in high-dimensional material spaces (consisting of composition and processing data) to find AABs that exhibit desired properties. The SL approach combines machine learning models and feedback from real experiments. For this purpose, 131 data points were collected from different publications. The data sources are described in detail, and the differences between the binders are discussed. The sought-after target property is the compressive strength of the binders after 28 days. The success is benchmarked in terms of the number of experiments required to find materials with the desired strength. The influence of some constraints was systematically analyzed, e.g., the possibility to parallelize the experiments, the influence of the chosen algorithm and the size of the training data set. The results show the advantage of SL, i.e., the amount of data required can potentially be reduced by at least one order of magnitude compared to traditional machine learning models, while at the same time exploiting highly complex information. This brings applications in laboratory practice within reach. KW - Alkali-activated binders KW - Machine learning KW - Sequential learning KW - Materials by design KW - Materials informatics PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-531376 SN - 0022-2461 SN - 1573-4803 VL - 56 SP - 15859 EP - 15881 PB - Springer CY - Dordrecht AN - OPUS4-53137 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Moreno Torres, Benjami A1 - Zia, Ghezal Ahmad A1 - Rug, Tehseen A1 - Firdous, Rafia A1 - Böhmer, Felix A1 - Stephan, Dietmar A1 - Kruschwitz, Sabine T1 - Presenting SLAMD – A Sequential Learning Based Software for the Inverse Design of Sustainable Cementitious Materials N2 - In recent decades, the number of components in concrete has grown, particularly in formulations aimed at reducing carbon footprints. Innovations include diverse binders, supplementary cementitious materials, activators, concrete admixtures, and recycled aggregates. These developments target not only the enhancement of material properties but also the mitigation of the ecological and economic impacts of concrete — the most extensively used material by humankind. However, these advancements also introduce a greater variability in the composition of raw materials. The material’s behavior is significantly influenced by its nanoscale properties, which can pose challenges in accurate characterization. Consequently, there’s an increasing need for experimental tuning of formulations. This is accompanied by a more inconsistent composition of raw materials, which makes an experimental tuning of formulations more and more necessary. However, the increased complexity in composition presents a challenge in finding the ideal formulation through trial and error. Inverse design (ID) techniques offer a solution to this challenge by allowing for a comprehensive search of the entire design space to create new and improved concrete formulations. In this publication, we introduce the concept of ID and demonstrate how our open-source app “SLAMD” provides all necessary steps of the workflow to adapt it in the laboratory, lowering the application barriers. The intelligent screening process, guided by a predictive model, leads to a more efficient and effective data-driven material design process resulting in reduced carbon footprint and improved material quality while considering socio-economic factors in the materials design. KW - Sustainable concrete KW - Machine learning optimization KW - Inverse design techniques KW - Scientific software KW - Data-driven material design PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-589993 VL - 9 SP - 180 EP - 187 AN - OPUS4-58999 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Boller, C. A1 - Wiggenhauser, Herbert T1 - Feasibility study on adapting a machine learning based multi-sensor data fusion approach for honeycomb detection in concrete N2 - We present the results of a machine learning (ML)- inspired data fusion approach, applied to multi-sensory nondestructive testing (NDT) data. Our dataset consists of Impact-Echo (IE), Ultrasonic Pulse Echo (US) and Ground Penetrating Radar (GPR) measurements collected on large-scale concrete specimens with built–in simulated honeycombing defects. In a previous study we were able to improve the detectability of honeycombs by fusing the information from the three different sensors with the density based clustering algorithm DBSCAN. We demonstrated the advantage of data fusion in reducing the false positives up to 10% compared to the best single sensor, thus, improving the detectability of the defects. The main objective of this contribution is to investigate the generality, i.e. whether the conclusions from one specimen can be adapted to the other. The effectiveness of the proposed approach on a separate full-scale concrete specimen was evaluated. T2 - NDE/NDT for Highway and Bridges: Structural Materials Technology 2016 CY - Portland, Oregon, USA DA - 29.08.2016 KW - Data fusion KW - Concrete evaluation KW - Honeycombing KW - Machine learning KW - Clustering PY - 2016 SN - 978-1-57117-392-8 SP - 144 EP - 148 PB - The American Society for Nondestructive Testing, Inc CY - Portland, Oregon, USA AN - OPUS4-38288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - VIDEO A1 - Kruschwitz, Sabine A1 - Völker, Christoph T1 - EU-Project: Reincarnate Reducing Waste and CO2 Footprint of construction sector N2 - In our current research project „Reincarnate“ we aim to anchor the idea of the circular economy in the European construction industry and significantly extend the life cycle of buildings, construction products and materials through innovative solutions. On the long term, this is an approach reduce construction waste by 80 percent and the CO2 footprint of the construction sector by 70 percent." This project has received funding from the European Union’s Horizon Europe research and innovation programme and will take you on a tour on what are the drivers, what is the goal, who are the partners and how we want to make the world a better place! KW - circular economy KW - CO2 footprint KW - Building industriy KW - Information modelling PY - 2022 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-56646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Moreno Torres, Benjami A1 - Rug, Tehseen A1 - Firdous, Rafia A1 - Zia, Ghezal Ahmad A1 - Lüders, Stefan A1 - Lisdero Scaffino, Horacio A1 - Höpler, Michael A1 - Böhmer, Felix A1 - Pfaff, Matthias A1 - Stephan, Dietmar A1 - Kruschwitz, Sabine T1 - Data driven design of alkali-activated concrete using sequential learning N2 - This paper presents a novel approach for developing sustainable building materials through Sequential Learning. Data sets with a total of 1367 formulations of different types of alkali-activated building materials, including fly ash and blast furnace slag-based concrete and their respective compressive strength and CO2-footprint, were compiled from the literature to develop and evaluate this approach. Utilizing this data, a comprehensive computational study was undertaken to evaluate the efficacy of the proposed material design methodologies, simulating laboratory conditions reflective of real-world scenarios. The results indicate a significant reduction in development time and lower research costs enabled through predictions with machine learning. This work challenges common practices in data-driven materials development for building materials. Our results show, training data required for data-driven design may be much less than commonly suggested. Further, it is more important to establish a practical design framework than to choose more accurate models. This approach can be immediately implemented into practical applications and can be translated into significant advances in sustainable building materials development. KW - Sustainable building materials KW - Sequential learning KW - Data-driven materials design KW - Alkali-activated building materials PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-584376 UR - https://www.sciencedirect.com/science/article/pii/S095965262302379X SN - 0959-6526 SN - 1879-1786 VL - 418 SP - 1 EP - 13 PB - Elsevier CY - Amsterdam AN - OPUS4-58437 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Moreno Torres, Benjamí A1 - Völker, Christoph A1 - Munsch, Sarah Mandy A1 - Hanke, T. A1 - Kruschwitz, Sabine ED - Tosti, F. T1 - An Ontology-Based Approach to Enable Data-Driven Research in the Field of NDT in Civil Engineering N2 - Although measurement data from the civil engineering sector are an important basis for scientific analyses in the field of non-destructive testing (NDT), there is still no uniform representation of these data. An analysis of data sets across different test objects or test types is therefore associated with a high manual effort. Ontologies and the semantic web are technologies already used in numerous intelligent systems such as material cyberinfrastructures or research databases. This contribution demonstrates the application of these technologies to the case of the 1H nuclear magnetic resonance relaxometry, which is commonly used to characterize water content and porosity distri-bution in solids. The methodology implemented for this purpose was developed specifically to be applied to materials science (MS) tests. The aim of this paper is to analyze such a methodology from the perspective of data interoperability using ontologies. Three benefits are expected from this ap-proach to the study of the implementation of interoperability in the NDT domain: First, expanding knowledge of how the intrinsic characteristics of the NDT domain determine the application of semantic technologies. Second, to determine which aspects of such an implementation can be improved and in what ways. Finally, the baselines of future research in the field of data integration for NDT are drawn. KW - Ontology Engineering KW - Interoperability KW - Data-integration KW - NMR relaxometry KW - materials informatics PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-529716 SN - 2072-4292 N1 - Geburtsname von Munsch, Sarah Mandy: Nagel, S. M. - Birth name of Munsch, Sarah Mandy: Nagel, S. M. VL - 13 IS - 12 SP - 2426 PB - Multidisciplinary Digital Publishing Institute (MDPI) CY - Basel, Switzerland AN - OPUS4-52971 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine T1 - Accelerating the search for sustainable concretes with AI N2 - With 8% of man-made CO2 emissions, cement production is an important driver of the climate crisis. By using alkali-activated binders, part of the energy-intensive clinker production process can be dispensed. However, as numerous raw materials are involved in the manufacturing process here, the complexity of the materials increases by orders of magnitude. Finding a properly balanced binder formulation is like looking for a needle in a haystack. We have shown for the first time that artificial intelligence (AI)-based optimization of alkali-activated binder formulations can significantly accelerate research. The "Sequential Learning App for Materials Discovery" (SLAMD) aims to accelerate practice transfer. With SLAMD, materials scientists have low-threshold access to AI through interactive and intuitive user interfaces. The value added by AI can be determined directly. For example, the CO2 emissions saved per ton of cement can be determined for each development cycle: the more efficient the AI optimization, the greater the savings. Our material database already includes more than 120,000 data points of alternative binders and is constantly being expanded with new parameters. We are currently driving the enrichment of the data with a life cycle analysis of the building materials. Based on a case study we show how intuitive access to AI can drive the adoption of techniques that make a real contribution to the development of resource-efficient and sustainable building materials of the future and make it easy to identify when classical experiments are more efficient. T2 - fib International Congress CY - Oslo, Norway DA - 12.06.2022 KW - Machine Learning KW - Materials Design KW - Sequential Learning KW - Materials Discovery KW - Concrete PY - 2022 AN - OPUS4-56635 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Moreno Torres, Benjami A1 - Firdous, R. A1 - Zia, G. J..A. A1 - Stephan, D. T1 - Accelerating the search for alkali-activated cements with sequential learning N2 - With 8% of man-made CO2 emissions, cement production is an important driver of the climate crisis. By using alkali-activated binders, part of the energy-intensive clinker production process can be dispensed. However, as numerous raw materials are involved in the manufacturing process here, the complexity of the materials increases by orders of magnitude. Finding a properly balanced binder formulation is like looking for a needle in a haystack. We have shown for the first time that artificial intelligence (AI)-based optimization of alkali-activated binder formulations can significantly accelerate research. The "Sequential Learning App for Materials Discovery" (SLAMD) aims to accelerate practice transfer. With SLAMD, materials scientists have low-threshold access to AI through interactive and intuitive user interfaces. The value added by AI can be determined directly. For example, the CO2 emissions saved per ton of cement can be determined for each development cycle: the more efficient the AI optimization, the greater the savings. Our material database already includes more than 120,000 data points of alternative binders and is constantly being expanded with new parameters. We are currently driving the enrichment of the data with a life cycle analysis of the building materials. Based on a case study we show how intuitive access to AI can drive the adoption of techniques that make a real contribution to the development of resource-efficient and sustainable building materials of the future and make it easy to identify when classical experiments are more efficient. T2 - fib International Congress CY - Oslo, Norway DA - 12.06.2022 KW - Concrete KW - Materials Design KW - Sequential Learning KW - Machine Learning PY - 2022 SP - 1 EP - 9 AN - OPUS4-56634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Völker, Christoph A1 - Kruschwitz, Sabine A1 - Ebell, Gino T1 - A machine learning‑based data fusion approach for improved corrosion testing N2 - This work presents machine learning-inspired data fusion approaches to improve the non-destructive testing of reinforced concrete. The principal effects that are used for data fusion are shown theoretically. Their effectiveness is tested in case studies carried out on largescale concrete specimens with built-in chloride-induced rebar corrosion. The dataset consists of half-cell potential mapping, Wenner resistivity, microwave moisture and ground penetrating radar measurements. Data fusion is based on the logistic Regression algorithm. It learns an optimal linear decision boundary from multivariate labeled training data, to separate intact and defect areas. The training data are generated in an experiment that simulates the entire life cycle of chloride-exposed concrete building parts. The unique possibility to monitor the deterioration, and targeted corrosion initiation, allows data labeling. The results exhibit an improved sensitivity of the data fusion with logistic regression compared to the best individual method half-cell potential. KW - Corrosion KW - Potential mapping KW - Machine learning PY - 2019 U6 - https://doi.org/10.1007/s10712-019-09558-4 SN - 1573-0956 SN - 0169-3298 VL - 41 IS - 3 SP - 531 EP - 548 PB - Springer Nature AN - OPUS4-48799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jablonka, Kevin Maik A1 - Ai, Qianxiang A1 - Al-Feghali, Alexander A1 - Badhwar, Shruti A1 - Bocarsly, Joshua D. A1 - Bran, Andres M. A1 - Bringuier, Stefan A1 - Brinson, L. Catherine A1 - Choudhary, Kamal A1 - Circi, Defne A1 - Cox, Sam A1 - de Jong, Wibe A. A1 - Evans, Matthew L. A1 - Gastellu, Nicolas A1 - Genzling, Jerome A1 - Gil, María Victoria A1 - Gupta, Ankur K. A1 - Hong, Zhi A1 - Imran, Alishba A1 - Kruschwitz, Sabine A1 - Labarre, Anne A1 - Lála, Jakub A1 - Liu, Tao A1 - Ma, Steven A1 - Majumdar, Sauradeep A1 - Merz, Garrett W. A1 - Moitessier, Nicolas A1 - Moubarak, Elias A1 - Mouriño, Beatriz A1 - Pelkie, Brenden A1 - Pieler, Michael A1 - Ramos, Mayk Caldas A1 - Ranković, Bojana A1 - Rodriques, Samuel G. A1 - Sanders, Jacob N. A1 - Schwaller, Philippe A1 - Schwarting, Marcus A1 - Shi, Jiale A1 - Smit, Berend A1 - Smith, Ben E. A1 - Van Herck, Joren A1 - Völker, Christoph A1 - Ward, Logan A1 - Warren, Sean A1 - Weiser, Benjamin A1 - Zhang, Sylvester A1 - Zhang, Xiaoqi A1 - Zia, Ghezal Ahmad A1 - Scourtas, Aristana A1 - Schmidt, K. J. A1 - Foster, Ian A1 - White, Andrew D. A1 - Blaiszik, Ben T1 - 14 examples of how LLMs can transform materials science and chemistry: a reflection on a large language model hackathon N2 - Large-language models (LLMs) such as GPT-4 caught the interest of many scientists. Recent studies suggested that these models could be useful in chemistry and materials science. To explore these possibilities, we organized a hackathon. This article chronicles the projects built as part of this hackathon. Participants employed LLMs for various applications, including predicting properties of molecules and materials, designing novel interfaces for tools, extracting knowledge from unstructured data, and developing new educational applications. The diverse topics and the fact that working prototypes could be generated in less than two days highlight that LLMs will profoundly impact the future of our fields. The rich collection of ideas and projects also indicates that the applications of LLMs are not limited to materials science and chemistry but offer potential benefits to a wide range of scientific disciplines. KW - Large Language model KW - Hackathon KW - Concrete KW - Prediction KW - Inverse Design KW - Orchestration PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-589961 VL - 2 IS - 5 SP - 1233 EP - 1250 PB - Royal Society of Chemistry (RSC) AN - OPUS4-58996 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -