TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Influence of Heat Control on Properties and Residual Stresses of Additive-Welded High-Strength Steel Components JF - Metals N2 - This contributed to the knowledge regarding the safe avoidance of cold cracking. In addition to a thermophysical simulation using a dilatometer of different high-strength steels with subsequent tensile testing, reference WAAM specimens (open hollow cuboids) were welded while utilizing a high-strength filler metal (ultimate tensile strength > 790 MPa). The heat control was varied by means of the heat input and interlayer temperature such that the Dt8/5 cooling times corresponded to the recommended processing range (approx. 5 s to 20 s). For the heat input, significant effects were exhibited, in particular on the local residual stresses in the component. Welding with an excessive heat input or deposition rate may lead to low cooling rates, and hence to unfavorable microstructure and component properties, but at the same time, is intended to result in lower tensile residual stress levels. Such complex interactions must ultimately be clarified to provide users with easily applicable processing recommendations and standard specifications for an economical WAAM of high-strength steels. These investigations demonstrated a major influence of the heat input on both the cooling conditions and the residual stresses of components manufactured withWAAM using high-strength filler materials. A higher heat input led to longer cooling times (Dt8/5) and approx. 200 MPa lower residual stresses in the surface of the top layer. KW - WAAM KW - Additive manufacturing KW - Heat control KW - High-strength filler metals KW - Residual stress PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553982 UR - https://www.mdpi.com/2075-4701/12/6/951 DO - https://doi.org/10.3390/met12060951 VL - 12 IS - 6 SP - 951 PB - MDPI AN - OPUS4-55398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boateng, Francis Twumasi A1 - Ewert, Uwe A1 - Kannengießer, Thomas A1 - Zscherpel, Uwe A1 - Griesche, Axel A1 - Kromm, Arne A1 - Hohendorf, Stephan A1 - Redmer, Bernard T1 - Real-time radiography for observation of crack growth during GTA (Gas Tungsten Arc) welding JF - Welding in the world N2 - In situ crack detection in the mushy zone and the solid weld of a gas tungsten arc (GTA) weld using X-ray imaging during welding is a new research area for NDT inspection. Usually, NDT flaw detection is done after the complete solidification of the weld seam. In this paper, we present the use of real-time radiography with a minifocus X-ray source (YXLON X-ray tube Y.TU 225-D04) and a 75μm pixel size digital detector array (Dexela 1512) for the acquisition of 2D radiographic images by a sequence of exposures with time intervals of 80 ms for hot crack detection during single pass bead-on-plate GTA welding of 3 mm thick plates of aluminium alloy AlMgSi (6060). An analysis of the crack distribution in the weld sample is conducted from the acquired 2D radiographs and its corresponding 3D volumetric reconstruction achieved by linear coplanar digital laminography. This in situ approach opens new possibilities in the field of hot crack research by having the direct information of both the crack initiation and growth and its correlation to the welding parameters. KW - Hot cracking KW - Radiography KW - GTA welding KW - Aluminium alloys KW - Real-time operation PY - 2016 DO - https://doi.org/10.1007/s40194-016-0351-7 SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 5 SP - 931 EP - 937 AN - OPUS4-37128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stress Build-Up during Mulitlayer Welding with Novel Martensitic Filler Materials JF - HTM - journal of heat treatment and materials N2 - Neuartige sogenannte Low-Transformation-Temperature (LTT)- Schweißzusätze weisen eine chemische Zusammensetzung auf, welche die Martensitbildung zu vergleichsweise niedrigen Temperaturen verschiebt. Dies wirkt sich maßgeblich auf die nach dem Schweißen vorliegenden Eigenspannungen aus. Obwohl dazu zahlreiche Veröffentlichungen vorliegen, blieben die Wirkzusammenhänge zwischen Umwandlungstemperatur und Schweißeigenspannungen bislang ungeklärt. Aus diesem Grund wurde in der vorliegenden Arbeit ein Versuch in einer Großprüfanlage durchgeführt, um den Einfluss der Martensitumwandlung während des Mehrlagenschweißens zu analysieren. Die In-Prozess-Beobachtung der auftretenden Kräfte und Momente offenbarte, dass die Eigenspannungsreduktion vom jeweils umwandelnden Volumen abhängt. Die Analyse der Schweißeigenspannungen verdeutlichte, dass die angestrebte Eigenspannungsbeeinflussung durch den Zusatzwerkstoff stark von den Randbedingungen (d. h. Nahtaufbau, Blechdicke) abhängt und einer Bewertung im jeweiligen Anwendungsfall bedarf. N2 - Controlling the level of mostly detrimental residual stresses already during the welding process would be highly attractive as time and cost consuming post processing may be prevented. Innovative Low Transformation Temperature (LTT-) filler materials are specially designed for Controlling weld residual stresses by means of adjusted martensite formation already during welding. Numerous publications can be found on this issue, but they provide only little insight into the interaction between martensite formation and resulting welding residual stresses. Within this study a component weld test was performed in a special large-scale testing facility. In-situ load analysis revealed that the amount of stress reduction during deposition of the individual weld runs is dependent on the weld volume undergoing phase transformation related to the shrinking volume. The residual stresses found alter welding show that the desired residual stress control by using LTT alloys is sensitive to welding boundary conditions (i. e. weld geometry, plate thickness) and to be evaluated separately for varying weld scenarios. T2 - Spannungsentstehung während des Mehrlagenschweißens mit einem neuartigen martensitischen Schweißzusatz KW - Residual stresses KW - LTT filler material KW - Martensite KW - Phase transformation KW - Welding KW - Eigenspannungen KW - LTT-Zusatzwerkstoff KW - Martensit KW - Phasenumwandlung KW - Schweißen PY - 2014 DO - https://doi.org/10.3139/105.110210 SN - 2194-1831 SN - 1867-2493 VL - 69 IS - 2 SP - 80 EP - 88 PB - Hanser CY - München AN - OPUS4-30719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gibmeier, J. A1 - Held, A. A1 - Altenkirch, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Buslaps, T. T1 - Real time monitoring of phase transformation and strain evolution in LTT weld filler material using EDXRD JF - Journal of materials processing technology N2 - For a newly developed 10% Cr and 10% Ni low transformation temperature (LTT) weld filler material, the local phase transformation kinetics and the strain evolution during gas tungsten arc welding (GTAW) under real welding conditions was studied. An experimental set-up and a measuring and evaluation strategy are presented to gain a real time insight into the welding process. The experiments were carried out at the beam line ID15@ESRF using a two detector EDXRD (energy dispersive X-ray diffraction) set-up and high energy synchrotron X-rays. The time-resolved diffraction analysis during welding was carried out locally throughout the weld in longitudinal as well as in transverse direction to the weld line to examine the interdependence of the strain state and the transformation kinetics. This comprehension is crucial for the optimization of the weld process, and thus for the tailoring of the resulting residual stress states, which is one of the main issues for the application of LTT alloys. Using the herein proposed approach EDXRD diffraction pattern can be monitored during real welding with a counting rate of 5 Hz. By means of the time resolved diffraction data the local transformation temperatures and times were determined and the local phasespecific strain evolutions are discussed with respect to the transformation rates and the time-delayed phase transformations. KW - In situ synchrotron X-ray diffraction KW - Low transformation temperature KW - Welding PY - 2014 DO - https://doi.org/10.1016/j.jmatprotec.2014.06.008 SN - 0924-0136 SN - 1873-4774 VL - 214 IS - 11 SP - 2739 EP - 2747 PB - Elsevier CY - Amsterdam AN - OPUS4-30955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhatti, A.A. A1 - Barsoum, Z. A1 - Van der Mee, V. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Fatigue strength improvement of welded structures using new low transformation temperature filler materials JF - Procedia Engineering N2 - The results reported in this research study are part of a larger EU RFCS (Research Fund for Coal and Steel) project where the aim is to study the fatigue behavior of improved welds in high strength steels by utilizing different improvement techniques. In this particular study LTT (Low Transformation Temperature) weld filler material have been investigated and their possibility to improve the fatigue strength. The characteristic of these filler material is that they undergo phase transformation at temperature close to room temperature which will reduce the tensile residual stress in the weld and in some cases result in compressive residual stresses. Two different LTT alloy compositions have been developed, with different Ms (Martensite Start) temperatures in order to study the amount of tensile/compressive residual stresses produced by these wires. Welding residual stress measurements were carried out by X-ray diffraction technique. Plates with welded longitudinal attachments were fabricated in 700 MPa and 960 MPa steel grades using different LTT filler materials. These specimens were fatigue tested in constant and variable amplitude loading and the fatigue test results were compared with results from specimen welded with conventional weld filler material. KW - Residual stresses KW - LTT KW - Welded joints KW - Fatigue testing PY - 2013 DO - https://doi.org/10.1016/j.proeng.2013.12.074 SN - 1877-7058 VL - 66 SP - 192 EP - 201 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-30609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Welding residual stress distribution of quenched and tempered and thermo-mechanically hot rolled high strength steels JF - Advanced materials research N2 - Beside quenched and tempered (QT) high strength steels advanced technologies in steel manufacturing provide steels produced by the thermo-mechanical controlled process (TMCP) with yield strength of 960 MPa. These steels differ in the carbon and micro-alloying element content. With variation of heat control TIG-welded dummy seams on both steel types were performed. Analyses concerning microstructure and residual stress evolution due to welding showed typical stress distributions according to common concepts. Yet, the TMCP-steel shows higher residual stresses than the QT-steel. KW - Mill Scale KW - Quenched KW - Residual Stress KW - Tempered High Strength Steel KW - Thermo-Mechanical Controlled Process KW - Welding PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.996.457 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 457 EP - 462 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-31443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Influence of heat control on welding stresses in multilayer-component welds of high-strength steel S960QL JF - Advanced materials research N2 - Today high-strength structural steels (yield strength ≥ 960 MPa) are increasingly applied. Therefore, weldments have to achieve equal strength. Yet, high residual stresses in those welds diminish the components safety. Especially high restraint intensities can lead to crack-critical stress-levels. A special 2-MN-test facility allowed online-measurements of global reaction forces under defined restraint conditions during welding and cooling of multilayer-component MAG-welds. Local residual stresses were measured via X-ray diffraction before and after relief of the restraint. Local and global stresses were highly affected by heat control. KW - High-Strength Steel KW - Reaction Stress KW - Welding KW - X-Ray Diffraction (XRD) PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.996.475 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 475 EP - 480 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-31444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Dixneit, Jonny A1 - Kannengießer, Thomas T1 - Residual stress engineering by low transformation temperature alloys - state of the art and recent developments JF - Welding in the world N2 - Residual stress engineering in welding becomes more and more prominent as the use of tailored materials, e.g., high-strength steels, calls for maximum utilization of the material properties. As a consequence, residual stresses have to be considered as design criterion. Moreover, it may be utilized to improve the material's performance. Low transformation temperature alloys are a smart approach to control the residual stresses already during the welding process avoiding time-consuming postweld treatments. This paper gives an overview about the progress made in research in this topic with special focus on residual stresses. Basics as well as important developments will be addressed. KW - Residual stresses KW - Martensite KW - Low temperature KW - Transformation PY - 2014 DO - https://doi.org/10.1007/s40194-014-0155-6 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 5 SP - 729 EP - 741 PB - Springer CY - Oxford AN - OPUS4-31446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne T1 - Evaluation of weld filler alloying concepts for residual stress engineering by means of neutron and X-ray diffraction JF - Advanced materials research N2 - Novel Low Transformation Temperature (LTT-) filler materials are specially designed for controlling residual stresses by means of adjusted martensite formation already during welding. Different alloying concepts compete for maximum stress reduction. Two newly developed LTT-alloys were evaluated concerning their potential for residual stress control. For this purpose residual stresses were determined in the surface and also in sub-surface areas of welded joints using X-ray diffraction and Neutron diffraction taking into account local variations of the unstrained lattice parameter. KW - LTT KW - Martensite KW - Weld Filler Materials PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.996.469 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 469 EP - 474 PB - Trans Tech Publ. CY - Zürich AN - OPUS4-31447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - In-situ observation of stress accumulation during sub-merged arc welding JF - Advanced materials research N2 - Results obtained from laboratory tests mostly need to be verified under fabrication conditions in order to incorporate design specifics (joint configuration and restraint), which effect the residual stress state considerably. For this purpose, multi-pass sub merged arc welding was performed in a special large-scale testing facility. The impact of varying interpass temperatures could be proven in-situ by means of a pronounced stress accumulation during welding and subsequent heat treatment accompanied by stress determination using X-ray diffraction. KW - Heat Control KW - Sub-Merged Arc Welding KW - X-Ray Diffraction (XRD) PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.996.417 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 417 EP - 423 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-31448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Rethmeier, Michael A1 - Gibmeier, J. A1 - Genzel, C. T1 - Residual stresses and in-situ measurement of phase transformation in low transformation temperature (LTT) welding materials JF - Advances in x-ray analysis PY - 2009 SN - 1097-0002 SN - 0069-8490 SN - 0376-0308 VL - 52 SP - 755 EP - 762 CY - Newtown Square, Pa., USA AN - OPUS4-19817 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Characterizing phase transformations of different LTT alloys and their effect on residual stresses and cold cracking JF - Welding in the world N2 - Novel martensitic filler materials with specially adjusted martensite start temperatures (Ms) can counteract the cooling specific shrinkage due to expansion effects of the weld metal associated with phase transformations. That can be exploited to create compressive residual stresses in the weld and adjacent areas, i.e. beneficial for increasing fatigue strength. The Ms-temperature is shifted via the chemical composition, mainly by the alloying elements nickel and chromium, resulting as well in different retained austenite contents. Investigations were made using different Low Transformation Temperature (LTT) alloys with varying nickel content. The resulting phase transformation temperatures were — for the first time — detected using high energy synchrotron diffraction and Single Sensor Differential Thermal Analysis (SS-DTA). Compared to angle dispersive diffraction, energy dispersive diffraction offers the possibility to measure residual stresses of the martensite and austenite phase parallel fast in one experiment up to depths of 100 μm. The residual stresses show significant distributions dependent on the Ms-temperature. The effect on the cold cracking behaviour of these alloys was investigated using the Tekken test. Results show that cold cracking can be avoided when appropriate contents of retained austenite are existent. KW - Austenite KW - Cold cracking KW - Martensite KW - Low KW - Temperature KW - Transformation PY - 2011 SN - 0043-2288 SN - 1878-6669 VL - 55 IS - 03/04 SP - 48 EP - 56 PB - Springer CY - Oxford AN - OPUS4-23402 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heinze, Christoph A1 - Kromm, Arne A1 - Schwenk, Christopher A1 - Kannengießer, Thomas A1 - Rethmeier, Michael T1 - Welding residual stresses depending on solid-state transformation behaviour studied by numerical and experimental methods JF - Materials science forum N2 - The development of high-strength structural steels with yield strengths up to 1000 MPa results in the requirement of suitable filler materials for welding. Recently designed low transformation temperature (LTT) alloys offer appropriate strength. The martensitic phase transformation during welding induces compressive residual stress in the weld zone. Therefore, the mechanical properties of welded joints can be improved. The present paper illustrates numerical simulation of the residual stresses in LTT-welds taking into account the effect of varying Ms/Mf-temperatures, and therefore different retained austenite contents, on the residual stresses. Residual stress distributions measured by synchrotron diffraction are taken as evaluation basis. A numerical model for the simulation of transformation affected welds is established and can be used for identification of appropriate Ms-temperatures considering the content of retained austenite. KW - Welding simulation KW - Residual stress KW - Low transformation temperature filler material KW - Martensitic transformation KW - Retained austenite PY - 2011 DO - https://doi.org/10.4028/www.scientific.net/MSF.681.85 SN - 0255-5476 VL - 681 SP - 85 EP - 90 PB - Trans Tech Publications CY - Aedermannsdorf, Switzerland AN - OPUS4-23357 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Altenkirch, J. A1 - Gibmeier, J. T1 - Residual stresses in multilayer welds with different martensitic transformation temperatures analyzed by high-energy synchrotron diffraction JF - Materials science forum N2 - Low Transformation Temperature (LTT) alloys were developed in order to control the residual stress development by the martensitic phase transformation already during cooling of the weld metal. The positive effect of such LTT alloys on the mitigation of detrimental tensile residual stresses during welding has already been confirmed on the basis of individual laboratory tests. Within the current project it was experimentally investigated whether the phase transformation mechanisms are effective under increased restraint due to multi-pass welding of thicker specimens. The local residual stress depth distribution was analyzed non-destructively for V-type welds processed by arc welding using energy dispersive synchrotron X-ray diffraction (EDXRD). The use of high energy (20 keV to 150 keV) EDXRD allowed for the evaluation of diffraction spectra containing information of all contributing phases. As the investigated LTT alloy contains retained austenite after welding, this phase was also considered for stress analysis. The results show in particular how the constraining effect of increased thickness of the welded plates and additional deposited weld metal influences the level of the residual stresses in near weld surface areas. While the longitudinal residual stresses were reduced in general, in the transition zone from the weld to the heat-affected zone (HAZ) compressive residual stresses were found. KW - Low Transformation Temperature KW - Phase Transformation KW - Residual Stress KW - Synchrotron Diffraction PY - 2011 DO - https://doi.org/10.4028/www.scientific.net/MSF.681.37 SN - 0255-5476 VL - 681 SP - 37 EP - 42 PB - Trans Tech Publications CY - Aedermannsdorf, Switzerland AN - OPUS4-23470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Formation of welding residual stresses in low transformation temperature (LTT) materials JF - Soldagem & Inspecao N2 - For the safety and cost efficiency of welded high-strength steel structures, precise knowledge of the level and distribution of welding- and cooling-specific stresses and residual stresses is essential, since they exert a decisive influence on strength, crack resistance, and finally on the bearable service load. This paper presents innovative filler materials, of which the phase transformation temperature was deliberately adjusted via the chemical composition. The transformation behaviour of these martensitic Low Transformation Temperature (LTT-) filler materials shows direct effects on the local residual stresses in the weld and the HAZ. These effects can purposefully be exploited to counteract the thermally induced shrinkage of the material and to produce significant compressive residual stresses in the weld. Comparative welding experiments were carried out on 690 MPa high-strength base materials using various LTT-filler materials. High energy synchrotron radiation was used for residual stress measurement. Particularly the use of high energy synchrotron radiation makes it possible to detect the residual stress condition fast without destruction of material. Thereby, residual stress depth gradients can be determined simultaneously without removing material. In steel, gradients of up to 150 µm can be resolved in such a way. Furthermore, the application of high energy radiation permits determination of residual stresses of any available residual austenite contents. Results show significant dependence of transformation temperatures on the resulting residual stress level and distribution. KW - Phase specific residual stresses KW - Phase transformation KW - Low transformation temperature filler wire KW - Energy dispersive diffraction KW - High strength steel PY - 2009 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-205909 DO - https://doi.org/10.1590/S0104-92242009000100009 SN - 0104-9224 SN - 1980-6973 VL - 14 IS - 1 SP - 74 EP - 81 PB - Associação Brasileira de Soldagem, ABS CY - Rio de Janeiro AN - OPUS4-20590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - In-situ-phase analysis using synchrotron radiation of low transformation temperature (LTT) welding material JF - Soldagem & Inspecao N2 - Cold cracking resistance is a relevant evaluation criterion for welded joints and affected by residual stresses which result from the welding procedure. Compressive residual stresses can thereby have a positive influence on preventing cracking. A unique possibility of generating compressive residual stresses already during the welding procedure is offered by the so-called Low Transformation Temperature (LTT) filler wires. Compared to conventional wires, these materials show decreased phase transformation temperatures which can work against the cooling-specific contraction. In consequence, distinct compressive residual stresses can be observed within the weld and adjacent areas. The strength of these fillers makes them potentially applicable to high-strength steel welding. Investigations were carried out to determine the phase transformation behaviour of different LTT-filler materials. Transformation temperatures were identified using Single Sensor Differential Thermal Analysis (SS-DTA). Additionally Synchrotron radiation was used to measure the transformation kinetics of all involved crystalline phases during heating and cooling of a simulated weld thermal cycle. KW - In-situ phase analysis KW - Energy dispersive diffraction KW - Phase transformation KW - Low Transformation Temperature filler wire PY - 2009 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-205922 DO - https://doi.org/10.1590/S0104-92242009000100010 SN - 0104-9224 SN - 1980-6973 VL - 14 IS - 1 SP - 82 EP - 88 PB - Associação Brasileira de Soldagem, ABS CY - Rio de Janeiro AN - OPUS4-20592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brauser, Stephan A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Rethmeier, Michael T1 - In-situ synchrotron diffraction and digital image correlation technique for characterizations of retained austenite stability in low-alloyed transformation induced plasticity steel JF - Scripta materialia N2 - Direct measurement and quantification of phase transformation in a low-alloyed transformation induced plasticity steels depending on the tensile load as well as determination of the real true stress and true strain values were carried out in-situ using high energy synchrotron radiation. Digital image correlation technique was used to quantify more precisely the true strain values. The aim of the work was to obtain a better understanding of the phase transformation of commercial low-alloyed transformation induced plasticity steel depending on the true strain and true stress values. KW - Transformation induced plasticity KW - In-situ synchrotron diffraction KW - Austenite stability KW - Digital image correlation PY - 2010 DO - https://doi.org/10.1016/j.scriptamat.2010.08.007 SN - 1359-6462 SN - 1872-8456 VL - 63 IS - 12 SP - 1149 EP - 1152 PB - Elsevier CY - Oxford AN - OPUS4-22164 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kannengießer, Thomas A1 - Lausch, Thomas A1 - Kromm, Arne T1 - Effects of heat control on the stress build-up during high-strength steel welding under defined restraint conditions JF - Welding in the world N2 - Realization and safe operation of modern welded structures are progressively requiring for base and filler materials to cope with continually increasing loads, Analyses with a view to crack prevention therefore need to accommodate particularly the structural design (restraint intensity) and the thermomechanical effects in terms of stresses introduced during welding, Against this background, multi-run welding experiments were carried out in an IRC - (Instrumented Restraint Cracking) Test under defined restraint intensity in order to examine the influence of heat control (preheating and interpass temperatures) on the weldinq-specific forces and stresses, The experiments revealed significant rises in the reaction force and stress after welding with increasing preheating and interpass temperature, Furthermore, various concepts for calculating the preheating temperature are discussed, It is demonstrated that the hitherto existing concepts for high-strength finegrained structural steels can lead to divergent results. KW - Cracking KW - Heat KW - High strength steels KW - Restraint KW - Stress KW - Testing PY - 2011 SN - 0043-2288 SN - 1878-6669 VL - 55 IS - 07/08 SP - 58 EP - 65 PB - Springer CY - Oxford AN - OPUS4-24294 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Dixneit, Jonny A1 - Kromm, Arne A1 - Hannemann, Andreas A1 - Friedersdorf, Peter A1 - Kannengießer, Thomas A1 - Gibmeier, J. T1 - In-situ load analysis in multi-run welding using LTT filler materials JF - Welding in the World - The International Jounral of Materials Joining N2 - Modifying the level of mostly detrimental welding residual stresses already during the welding process would be highly attractive as time- and cost-consuming post processing may be prevented. The nature of stress buildup during welding-associated cooling is highly affected by phase transformations. Up to now, it is not clear in which way this is applicable to real component welding exhibiting high shrinkage restraint and complex heat input. In this study, two different low transformation temperature (LTT) alloys have been investigated concerning the stress development in restrained multi-run butt welding in order to evaluate the potential of stress reduction. Pulsed gas metal arc welding (P-GMAW) welding was executed on a testing facility designed to simulate real lifelike restraint conditions of component weldments. The effect of reducedMS-temperatures and the heat control on the globally acting stresses was monitored by in-situ measurement of the reaction forces during welding fabrication. Additional local residual stress measurements allowed analyzing global as well as local loading of the welded construction. Although phase transformation has a significant influence on unloading the joint during each weld pass, the reaction stress upon cooling to room temperature seems to be determined mainly by the heat input. On the surface, low longitudinal residual stresses were observed in case of LTT whereas transverse residual stresses are less affected. T2 - 69th IIW Annual Assembly and International Conference CY - Melbourne, Australia DA - 10.07.2016 KW - Phase transformation temperature KW - Residual stress KW - Welding KW - Dilution KW - Restraint PY - 2016 DO - https://doi.org/10.1007/s40194-016-0373-1 SN - 0043-2288 VL - 60 IS - 6 SP - 1159 EP - 1168 PB - Springer CY - Heidelberg AN - OPUS4-37892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Van der Mee, V. A1 - Kannengießer, Thomas A1 - Kalfsbeek, B. T1 - Properties and weldability of modified low transformation termperature filler wires JF - Welding in the world N2 - Low transformation temperature (LTT) alloys allow to control residual stresses already during the welding process. Especially high-strength structural steel applications may benefit from the LTT effect as they are sensitive to residual stresses due to a limited ductility. Within this study, two modified LTT alloys were tested concerning their weldability under varying conditions. Beside the transformation behavior, basic material properties were determined from all weld metal. Hot cracking as well as cold cracking susceptibility was evaluated using specific tests. The materials' capability for residual stress control was characterized by online measurements of the occurring loads during double-sided multipass fillet welding in a special test facility. Varying heat control parameters were found to affect the stress buildup significantly. In the specific case, the results revealed that higher working temperatures may favor lower stress buildup despite the higher overall heat input. Local residual stress measurements using X-ray diffraction support this finding. KW - Weldability KW - Filler materials KW - Wire KW - Temperature KW - Transformation PY - 2015 DO - https://doi.org/10.1007/s40194-014-0215-y SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 3 SP - 413 EP - 425 PB - Springer CY - Oxford AN - OPUS4-33066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -