TY - JOUR A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Hensel, J. A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Influence of Heat Control on Properties and Residual Stresses of Additive-Welded High-Strength Steel Components N2 - This contributed to the knowledge regarding the safe avoidance of cold cracking. In addition to a thermophysical simulation using a dilatometer of different high-strength steels with subsequent tensile testing, reference WAAM specimens (open hollow cuboids) were welded while utilizing a high-strength filler metal (ultimate tensile strength > 790 MPa). The heat control was varied by means of the heat input and interlayer temperature such that the Dt8/5 cooling times corresponded to the recommended processing range (approx. 5 s to 20 s). For the heat input, significant effects were exhibited, in particular on the local residual stresses in the component. Welding with an excessive heat input or deposition rate may lead to low cooling rates, and hence to unfavorable microstructure and component properties, but at the same time, is intended to result in lower tensile residual stress levels. Such complex interactions must ultimately be clarified to provide users with easily applicable processing recommendations and standard specifications for an economical WAAM of high-strength steels. These investigations demonstrated a major influence of the heat input on both the cooling conditions and the residual stresses of components manufactured withWAAM using high-strength filler materials. A higher heat input led to longer cooling times (Dt8/5) and approx. 200 MPa lower residual stresses in the surface of the top layer. KW - WAAM KW - Additive manufacturing KW - Heat control KW - High-strength filler metals KW - Residual stress PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553982 UR - https://www.mdpi.com/2075-4701/12/6/951 DO - https://doi.org/10.3390/met12060951 VL - 12 IS - 6 SP - 951 PB - MDPI AN - OPUS4-55398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Boateng, Francis Twumasi A1 - Ewert, Uwe A1 - Kannengießer, Thomas A1 - Zscherpel, Uwe A1 - Griesche, Axel A1 - Kromm, Arne A1 - Hohendorf, Stephan A1 - Redmer, Bernard T1 - Real-time radiography for observation of crack growth during GTA (Gas Tungsten Arc) welding N2 - In situ crack detection in the mushy zone and the solid weld of a gas tungsten arc (GTA) weld using X-ray imaging during welding is a new research area for NDT inspection. Usually, NDT flaw detection is done after the complete solidification of the weld seam. In this paper, we present the use of real-time radiography with a minifocus X-ray source (YXLON X-ray tube Y.TU 225-D04) and a 75μm pixel size digital detector array (Dexela 1512) for the acquisition of 2D radiographic images by a sequence of exposures with time intervals of 80 ms for hot crack detection during single pass bead-on-plate GTA welding of 3 mm thick plates of aluminium alloy AlMgSi (6060). An analysis of the crack distribution in the weld sample is conducted from the acquired 2D radiographs and its corresponding 3D volumetric reconstruction achieved by linear coplanar digital laminography. This in situ approach opens new possibilities in the field of hot crack research by having the direct information of both the crack initiation and growth and its correlation to the welding parameters. KW - Hot cracking KW - Radiography KW - GTA welding KW - Aluminium alloys KW - Real-time operation PY - 2016 DO - https://doi.org/10.1007/s40194-016-0351-7 SN - 0043-2288 SN - 1878-6669 VL - 60 IS - 5 SP - 931 EP - 937 AN - OPUS4-37128 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Stress Build-Up during Mulitlayer Welding with Novel Martensitic Filler Materials N2 - Neuartige sogenannte Low-Transformation-Temperature (LTT)- Schweißzusätze weisen eine chemische Zusammensetzung auf, welche die Martensitbildung zu vergleichsweise niedrigen Temperaturen verschiebt. Dies wirkt sich maßgeblich auf die nach dem Schweißen vorliegenden Eigenspannungen aus. Obwohl dazu zahlreiche Veröffentlichungen vorliegen, blieben die Wirkzusammenhänge zwischen Umwandlungstemperatur und Schweißeigenspannungen bislang ungeklärt. Aus diesem Grund wurde in der vorliegenden Arbeit ein Versuch in einer Großprüfanlage durchgeführt, um den Einfluss der Martensitumwandlung während des Mehrlagenschweißens zu analysieren. Die In-Prozess-Beobachtung der auftretenden Kräfte und Momente offenbarte, dass die Eigenspannungsreduktion vom jeweils umwandelnden Volumen abhängt. Die Analyse der Schweißeigenspannungen verdeutlichte, dass die angestrebte Eigenspannungsbeeinflussung durch den Zusatzwerkstoff stark von den Randbedingungen (d. h. Nahtaufbau, Blechdicke) abhängt und einer Bewertung im jeweiligen Anwendungsfall bedarf. N2 - Controlling the level of mostly detrimental residual stresses already during the welding process would be highly attractive as time and cost consuming post processing may be prevented. Innovative Low Transformation Temperature (LTT-) filler materials are specially designed for Controlling weld residual stresses by means of adjusted martensite formation already during welding. Numerous publications can be found on this issue, but they provide only little insight into the interaction between martensite formation and resulting welding residual stresses. Within this study a component weld test was performed in a special large-scale testing facility. In-situ load analysis revealed that the amount of stress reduction during deposition of the individual weld runs is dependent on the weld volume undergoing phase transformation related to the shrinking volume. The residual stresses found alter welding show that the desired residual stress control by using LTT alloys is sensitive to welding boundary conditions (i. e. weld geometry, plate thickness) and to be evaluated separately for varying weld scenarios. T2 - Spannungsentstehung während des Mehrlagenschweißens mit einem neuartigen martensitischen Schweißzusatz KW - Residual stresses KW - LTT filler material KW - Martensite KW - Phase transformation KW - Welding KW - Eigenspannungen KW - LTT-Zusatzwerkstoff KW - Martensit KW - Phasenumwandlung KW - Schweißen PY - 2014 DO - https://doi.org/10.3139/105.110210 SN - 2194-1831 SN - 1867-2493 VL - 69 IS - 2 SP - 80 EP - 88 PB - Hanser CY - München AN - OPUS4-30719 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gibmeier, J. A1 - Held, A. A1 - Altenkirch, J. A1 - Kromm, Arne A1 - Kannengießer, Thomas A1 - Buslaps, T. T1 - Real time monitoring of phase transformation and strain evolution in LTT weld filler material using EDXRD N2 - For a newly developed 10% Cr and 10% Ni low transformation temperature (LTT) weld filler material, the local phase transformation kinetics and the strain evolution during gas tungsten arc welding (GTAW) under real welding conditions was studied. An experimental set-up and a measuring and evaluation strategy are presented to gain a real time insight into the welding process. The experiments were carried out at the beam line ID15@ESRF using a two detector EDXRD (energy dispersive X-ray diffraction) set-up and high energy synchrotron X-rays. The time-resolved diffraction analysis during welding was carried out locally throughout the weld in longitudinal as well as in transverse direction to the weld line to examine the interdependence of the strain state and the transformation kinetics. This comprehension is crucial for the optimization of the weld process, and thus for the tailoring of the resulting residual stress states, which is one of the main issues for the application of LTT alloys. Using the herein proposed approach EDXRD diffraction pattern can be monitored during real welding with a counting rate of 5 Hz. By means of the time resolved diffraction data the local transformation temperatures and times were determined and the local phasespecific strain evolutions are discussed with respect to the transformation rates and the time-delayed phase transformations. KW - In situ synchrotron X-ray diffraction KW - Low transformation temperature KW - Welding PY - 2014 DO - https://doi.org/10.1016/j.jmatprotec.2014.06.008 SN - 0924-0136 SN - 1873-4774 VL - 214 IS - 11 SP - 2739 EP - 2747 PB - Elsevier CY - Amsterdam AN - OPUS4-30955 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bhatti, A.A. A1 - Barsoum, Z. A1 - Van der Mee, V. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Fatigue strength improvement of welded structures using new low transformation temperature filler materials N2 - The results reported in this research study are part of a larger EU RFCS (Research Fund for Coal and Steel) project where the aim is to study the fatigue behavior of improved welds in high strength steels by utilizing different improvement techniques. In this particular study LTT (Low Transformation Temperature) weld filler material have been investigated and their possibility to improve the fatigue strength. The characteristic of these filler material is that they undergo phase transformation at temperature close to room temperature which will reduce the tensile residual stress in the weld and in some cases result in compressive residual stresses. Two different LTT alloy compositions have been developed, with different Ms (Martensite Start) temperatures in order to study the amount of tensile/compressive residual stresses produced by these wires. Welding residual stress measurements were carried out by X-ray diffraction technique. Plates with welded longitudinal attachments were fabricated in 700 MPa and 960 MPa steel grades using different LTT filler materials. These specimens were fatigue tested in constant and variable amplitude loading and the fatigue test results were compared with results from specimen welded with conventional weld filler material. KW - Residual stresses KW - LTT KW - Welded joints KW - Fatigue testing PY - 2013 DO - https://doi.org/10.1016/j.proeng.2013.12.074 SN - 1877-7058 VL - 66 SP - 192 EP - 201 PB - Elsevier Ltd. CY - Amsterdam [u.a.] AN - OPUS4-30609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schaupp, Thomas A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Welding residual stress distribution of quenched and tempered and thermo-mechanically hot rolled high strength steels N2 - Beside quenched and tempered (QT) high strength steels advanced technologies in steel manufacturing provide steels produced by the thermo-mechanical controlled process (TMCP) with yield strength of 960 MPa. These steels differ in the carbon and micro-alloying element content. With variation of heat control TIG-welded dummy seams on both steel types were performed. Analyses concerning microstructure and residual stress evolution due to welding showed typical stress distributions according to common concepts. Yet, the TMCP-steel shows higher residual stresses than the QT-steel. KW - Mill Scale KW - Quenched KW - Residual Stress KW - Tempered High Strength Steel KW - Thermo-Mechanical Controlled Process KW - Welding PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.996.457 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 457 EP - 462 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-31443 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kannengießer, Thomas A1 - Kromm, Arne T1 - Influence of heat control on welding stresses in multilayer-component welds of high-strength steel S960QL N2 - Today high-strength structural steels (yield strength ≥ 960 MPa) are increasingly applied. Therefore, weldments have to achieve equal strength. Yet, high residual stresses in those welds diminish the components safety. Especially high restraint intensities can lead to crack-critical stress-levels. A special 2-MN-test facility allowed online-measurements of global reaction forces under defined restraint conditions during welding and cooling of multilayer-component MAG-welds. Local residual stresses were measured via X-ray diffraction before and after relief of the restraint. Local and global stresses were highly affected by heat control. KW - High-Strength Steel KW - Reaction Stress KW - Welding KW - X-Ray Diffraction (XRD) PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.996.475 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 475 EP - 480 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-31444 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Dixneit, Jonny A1 - Kannengießer, Thomas T1 - Residual stress engineering by low transformation temperature alloys - state of the art and recent developments N2 - Residual stress engineering in welding becomes more and more prominent as the use of tailored materials, e.g., high-strength steels, calls for maximum utilization of the material properties. As a consequence, residual stresses have to be considered as design criterion. Moreover, it may be utilized to improve the material's performance. Low transformation temperature alloys are a smart approach to control the residual stresses already during the welding process avoiding time-consuming postweld treatments. This paper gives an overview about the progress made in research in this topic with special focus on residual stresses. Basics as well as important developments will be addressed. KW - Residual stresses KW - Martensite KW - Low temperature KW - Transformation PY - 2014 DO - https://doi.org/10.1007/s40194-014-0155-6 SN - 0043-2288 SN - 1878-6669 VL - 58 IS - 5 SP - 729 EP - 741 PB - Springer CY - Oxford AN - OPUS4-31446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne T1 - Evaluation of weld filler alloying concepts for residual stress engineering by means of neutron and X-ray diffraction N2 - Novel Low Transformation Temperature (LTT-) filler materials are specially designed for controlling residual stresses by means of adjusted martensite formation already during welding. Different alloying concepts compete for maximum stress reduction. Two newly developed LTT-alloys were evaluated concerning their potential for residual stress control. For this purpose residual stresses were determined in the surface and also in sub-surface areas of welded joints using X-ray diffraction and Neutron diffraction taking into account local variations of the unstrained lattice parameter. KW - LTT KW - Martensite KW - Weld Filler Materials PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.996.469 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 469 EP - 474 PB - Trans Tech Publ. CY - Zürich AN - OPUS4-31447 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - In-situ observation of stress accumulation during sub-merged arc welding N2 - Results obtained from laboratory tests mostly need to be verified under fabrication conditions in order to incorporate design specifics (joint configuration and restraint), which effect the residual stress state considerably. For this purpose, multi-pass sub merged arc welding was performed in a special large-scale testing facility. The impact of varying interpass temperatures could be proven in-situ by means of a pronounced stress accumulation during welding and subsequent heat treatment accompanied by stress determination using X-ray diffraction. KW - Heat Control KW - Sub-Merged Arc Welding KW - X-Ray Diffraction (XRD) PY - 2014 DO - https://doi.org/10.4028/www.scientific.net/AMR.996.417 SN - 1022-6680 SN - 1662-8985 VL - 996 SP - 417 EP - 423 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-31448 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -