TY - CONF A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Materials Research in Welding using modern Visualization Techniques T2 - Fabtech 2015 Professional Program CY - Chicago, USA DA - 2015-11-09 PY - 2015 AN - OPUS4-34874 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kromm, Arne A1 - Van der Mee, V. A1 - Kannengießer, Thomas A1 - Kalfsbeek, B. T1 - Properties and weldability of modified low transformation termperature filler wires N2 - Low transformation temperature (LTT) alloys allow to control residual stresses already during the welding process. Especially high-strength structural steel applications may benefit from the LTT effect as they are sensitive to residual stresses due to a limited ductility. Within this study, two modified LTT alloys were tested concerning their weldability under varying conditions. Beside the transformation behavior, basic material properties were determined from all weld metal. Hot cracking as well as cold cracking susceptibility was evaluated using specific tests. The materials' capability for residual stress control was characterized by online measurements of the occurring loads during double-sided multipass fillet welding in a special test facility. Varying heat control parameters were found to affect the stress buildup significantly. In the specific case, the results revealed that higher working temperatures may favor lower stress buildup despite the higher overall heat input. Local residual stress measurements using X-ray diffraction support this finding. KW - Weldability KW - Filler materials KW - Wire KW - Temperature KW - Transformation PY - 2015 U6 - https://doi.org/10.1007/s40194-014-0215-y SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 3 SP - 413 EP - 425 PB - Springer CY - Oxford AN - OPUS4-33066 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - Improving welding stresses by filler metal and heat control selection in component-related butt joints of high-strength steel N2 - The application of high-strength fine-grained structural steels with yield strengths greater than or equal to 690 MPa expands because of present light weight design trends. The requirements regarding the welded components safety increased due to high loading capacity. This determines a sustainable and economic application as well. However, high welding residual stresses could diminish the components safety, especially due to high restraint conditions in component or repair welds. Therefore, this work is concerned with global and local welding stresses, especially crack-critical welding stresses in the HAZ and while root welding due to the restraint conditions. Restraint intensities of real components were analysed and realised with two different weld tests, alongside two different plate dimensions and steel grades. A comparison of the test results showed several significant effects for heat control and restraint intensity regarding restraint forces and local welding stresses. Among these effects, substantial influences were found for the filler metal selection with partially altered results for root and filler beads. Local stresses of weld seam and HAZ were affected differently. KW - Residual stresses KW - MAG welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2015 U6 - https://doi.org/10.1007/s40194-014-0219-7 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 3 SP - 455 EP - 464 PB - Springer CY - Oxford AN - OPUS4-32546 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schasse, R. A1 - Kannengießer, Thomas A1 - Kromm, Arne A1 - Mente, Tobias T1 - Residual stresses in repair welds of high-strength low-alloy steels N2 - Residual stresses are often the cause for cracks in weld constructions. That is why the residual stress level, induced by manufacturing process, plays a crucial role. The present study aims on the effect of multiple repair weld procedures on a high-strength structural steel S690QL. The widespread technology of carbon arc-air gouging was applied. The weld zone and the heat-affected zone (HAZ) were subjected to multiple thermal cycles by gouging and subsequent repair welding. The investigations were focused on the change of the residuals stresses, the impact on the microstructure and the changes for the mechanical properties of the repair welded joint. The residual stresses were determined by X-ray diffraction. The results have shown a significant dependence for the residual stress levels from the repair cycle. In addition, distinctive changes in microstructures and hence mechanical properties occurred. The fusion line of the repair weld and the adjacent HAZ are the most critical areas. This is where the loss of ductility is most pronounced. KW - Residual stresses KW - High-strength steels KW - Brittle fracture PY - 2015 U6 - https://doi.org/10.1007/s40194-015-0257-9 SN - 0043-2288 SN - 1878-6669 VL - 59 IS - 6 SP - 757 EP - 765 PB - Springer CY - Oxford AN - OPUS4-34974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -