TY - JOUR A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Schaupp, Thomas A1 - Kannengießer, Thomas T1 - Welding stress control in high-strength steel components using adapted heat control concepts JF - Welding in the World N2 - High-strength steels are increasingly applied in modern steel constructions to meet today’s lightweight requirements. Welding of these steels demands a profound knowledge of the interactions between the welding process, cooling conditions, heat input, and the resulting metallurgical occurrences in the weld and its vicinity. Additionally, welding stresses may be detrimental for the safety and performance of high-strength steel component welds during fabrication and service, especially due to the high yield ratio. For a development of strategies to adjust welding heat control, all these effects should be considered, to reach a complete exploitation of the high-strength steel potential. In recent researches at BAM, multilayer GMAW experiments were performed with high-strength steels, in which cooling conditions and resulting microstructure were analyzed for varied heat control parameters. The application of a unique 3d-operating testing facility and X-ray diffraction measurements allowed the analysis of local stresses in the weld while welding and cooling under component relevant shrinkage restraints. As a result, correlations between material behavior, welding, and cooling condition and the arising multi-axial stresses and forces were found. Based on this study, statements for the development of adapted heat control concepts were derived, which are presented by means of specific analysis examples. KW - Residual stresses KW - GMA welding KW - Restraint KW - High-strength steels KW - Process parameters PY - 2019 DO - https://doi.org/10.1007/s40194-018-00691-z SN - 0043-2288 VL - 63 IS - 3 SP - 647 EP - 661 PB - Springer AN - OPUS4-48006 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wandtke, Karsten A1 - Schröpfer, Dirk A1 - Scharf-Wildenhain, R. A1 - Hälsig, A. A1 - Kromm, Arne A1 - Kannengießer, Thomas T1 - WAAM process influences on local microstructure and residual stresses in high-strength steels T2 - 46th MPA-Seminar Manuscripts N2 - High-strength fine-grain structural steels have great potential for weight optimization of many modern engineering structures. Efficient manufacturing can be achieved here above all by Wire Arc Additive Manufacturing (WAAM). First commercial high-strength welding consumables for WAAM are already available. Due to a lack of knowledge and guidelines for the industry regarding welding residual stresses and component safety in manufacturing and operation, their application is still severely limited. Residual stresses play a crucial role here, as the special microstructure of high-strength steels is sensitive to cold cracking. For this reason, process- and material-related influences, as well as the design effects on residual stress formation, are being investigated in a project funded by the AiF (FOSTA P1380/IGF 21162 BG). This study focuses on determining the interactions between heat control during WAAM process, resulting hardness, microstructure, and residual stresses, analyzed by X-ray diffraction. Welding experiments using geometrically similar AM specimens show that, with regard to the heat input, the energy per unit length in particular leads to significantly affected cooling times and microstructures and causes pronounced localized effects in terms of residual stresses in the upper weld beads. T2 - 46th MPA-Seminar CY - Stuttgart, Germany DA - 12.10.2021 KW - Wire Arc Additive Manufacturing KW - High-strength structural steels KW - Vickers hardness KW - Residual stresses PY - 2021 VL - 46 SP - 296 EP - 306 PB - MPA-Stuttgart AN - OPUS4-53571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schröpfer, Dirk A1 - Kromm, Arne A1 - Dixneit, Jonny A1 - Lausch, Thomas A1 - Hannemann, Andreas A1 - Kannengießer, Thomas T1 - Von der Anwendung ins Prüflabor: Maßstabsgetreues Bewerten von Spannungen in geschweißten Bauteilen T2 - DVS-Congress 2018 - DVS-Berichte N2 - Eigenspannungen sind von zentraler Bedeutung für die Performance geschweißter Bauteile. Die Bewertung schweißbedingter Beanspruchungen im Labormaßstab ist oft nicht zielführend. Reale Bauteilschweißungen weisen geometrisch und konstruktiv bedingt meist divergente Wärmeableitungs- und Einspannbedingungen auf. Dadurch lassen sich häufig nur eingeschränkt Aussagen über Eigenspannungshöhen, -verteilungen und die wesentlichen Einflussfaktoren treffen. Dies führt oftmals zur eher konservativen Konstruktionsauslegung und damit zu einer geringerenRessourcen- und Energieeffizienz. Dieser Beitrag widmet sich den Bestrebungen, reale Randbedingungen beim Bauteilschweißen in das Labor zu übertragen. Es werden die Möglichkeiten eines speziell für diesen Zweck an der BAM entwickelten Prüfsystems mit einer maximalen Tragkraft von 2 MN aufgezeigt. Durch die konstruktive Gestaltung der Anlage lassen sich in Schweißversuchen schweißbedingte Beanspruchungen nachbilden und die komplexen Einflüsse und Wechselwirkungen durch Schweißprozess, Bauteilgeometrie und -konstruktion sowie durch die eingesetzten Grund- und Zusatzwerkstoffe quantifizieren. Darüber hinaus können mittels Röntgenbeugung die resultierenden lokalen Eigenspannungen präzise und mit hoher Ortsauflösung bestimmt werden. Anhand von Beispielen wird die Nachbildung realer Produktionsbedingungen im Labor erörtert und gezeigt, wie die Spannungen beim Schweißen hochfester Baustähle von konstruktiven, werkstoff- und prozessseitigen Randbedingungen abhängen. So wurde geklärt, wie erhöhte Arbeitstemperaturen zum signifikanten Anstieg der Beanspruchungen führen. T2 - DVS Congress 2019 Große Schweißtechnische Tagung CY - Rostock, Germany DA - 16.09.2019 KW - Schweißen KW - Eigenspannungen KW - Bauteilprüfung PY - 2019 SN - 978-3-96144-066-5 VL - 355 SP - 280 EP - 286 PB - DVS Media GmbH CY - Düsseldorf AN - OPUS4-50279 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Mohr, Gunther A1 - Altenburg, Simon A1 - Evans, Alexander A1 - Serrano Munoz, Itziar A1 - Kromm, Arne A1 - Pirling, T. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Triaxial Residual Stress in Laser Powder Bed Fused 316L: Effects of Interlayer Time and Scanning Velocity JF - Advanced Engineering Materials N2 - The triaxial distribution of the residual stress in laser powder bed fused austenitic steel 316L was determined by X-ray and neutron diffraction. The residual stress analysis results were linked to the thermal history of the specimens, which were manufactured with varying inter-layer-times and scanning velocities. A clear link between the in-process temperature of the specimens and the residual stress was found, based on in-situ monitoring data. KW - Stainless Steel KW - AGIL KW - Residual Stress KW - X-ray and Neutron Diffraction KW - Additive Manufacturing PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542620 DO - https://doi.org/10.1002/adem.202101330 SP - 1 EP - 13 PB - Wiley-VCH GmbH AN - OPUS4-54262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sprengel, Maximilian A1 - Ulbricht, Alexander A1 - Evans, Alexander A1 - Kromm, Arne A1 - Sommer, Konstantin A1 - Werner, Tiago A1 - Kelleher, J. A1 - Bruno, Giovanni A1 - Kannengießer, Thomas T1 - Towards the optimization of post-laser powder bed fusion stress-relieve treatments of stainless steel 316L JF - Metallurgical and materials transactions A N2 - This study reports on the stress relaxation potential of stress-relieving heat treatments for laser powder bed fused 316L. The residual stress is monitored non-destructively using neutron diffraction before and after the heat treatment. Moreover, the evolution of the microstructure is analysed using scanning electron microscopy. The results show, that a strong relaxation of the residual stress is obtained when applying a heat treatment temperature at 900°C. However, the loss of the cellular substructure needs to be considered when applying this heat treatment strategy. KW - Residual stress KW - Additive manufacturing KW - Neutron diffraction KW - Projekt AGIL - Alterung additiv gefertigter metallischer Materialien und Komponenten PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-536045 DO - https://doi.org/10.1007/s11661-021-06472-6 SN - 1543-1940 VL - 52 IS - 12 SP - 5342 EP - 5356 PB - Springer CY - Boston AN - OPUS4-53604 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Yu, C.-H. A1 - Peng, R. L. A1 - Luzin, V. A1 - Sprengel, Maximilian A1 - Calmunger, M. A1 - Lundgren, J.-E. A1 - Brodin, H. A1 - Kromm, Arne A1 - Moverare, J. T1 - Thin-wall effects and anisotropic deformation mechanisms of an additively manufactured Ni-based superalloy JF - Additive Manufacturing N2 - Laser powder bed fusion (LPBF) of Ni-based superalloys shows great potential for high temperature applications, for example, as a burner repair application for gas turbines where the thin-walled structure is important. It motivates this work to investigate the evolution of microstructure and the anisotropic mechanical behavior when plate-like specimens are built with a thickness from 4 mm down to 1 mm. By performing texture analysis using neutron diffraction, a clear transition in fiber texture from <011> to <001> is indicated when the specimen becomes thinner. The residual stress shows no thickness dependence, and at the subsurface the residual stress reaches the same level as the yield strength. Due to the rough as-built surface, a roughness compensation method for mechanical properties of thin-walled structures is outlined and demonstrated. Tensile tests from room temperature up to 700 ◦C have been carried out. Anisotropic mechanical behavior is found at all temperatures, which is strongly related to the anisotropic texture evolution. Stronger texture evolution and grain rotations are discovered when the tensile loading is applied along the building direction. The mechanical behavior has been compared to a wrought material, where the high dislocation density and the subgrain structure of the LPBF material result in a higher yield strength. Combining the statistical texture analysis by neutron diffraction with mechanical testing, EBSD grain orientation mapping and the investigation of dislocation structures using transmission electron microscopy, this work illustrates the significance of texture for the thin-wall effect and anisotropic mechanical behavior of LPBF materials. KW - Hastelloy X KW - Hot tensile test KW - Crystallographic texture KW - Roughness KW - Residual stress KW - Dislocation density PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-518759 DO - https://doi.org/10.1016/j.addma.2020.101672 VL - 36 SP - 101672 PB - Elsevier B.V. AN - OPUS4-51875 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Mishurova, Tatiana A1 - Thiede, Tobias A1 - Sprengel, Maximilian A1 - Kromm, Arne A1 - Nadammal, Naresh A1 - Nolze, Gert A1 - Saliwan Neumann, Romeo A1 - Evans, Alexander A1 - Bruno, Giovanni T1 - The residual stress in as‑built Laser Powder Bed Fusion IN718 alloy as a consequence of the scanning strategy induced microstructure JF - Scientific reports N2 - The effect of two types of scanning strategies on the grain structure and build-up of Residual Stress (RS) has been investigated in an as-built IN718 alloy produced by Laser Powder Bed Fusion (LPBF). The RS state has been investigated by X-ray diffraction techniques. The microstructural characterization was performed principally by Electron Backscatter Diffraction (EBSD), where the application of a post-measurement refinement technique enables small misorientations (< 2°) to be resolved. Kernel average misorientation (KAM) distributions indicate that preferably oriented columnar grains contain higher levels of misorientation, when compared to elongated grains with lower texture. The KAM distributions combined with X-ray diffraction stress maps infer that the increased misorientation is induced via plastic deformation driven by the thermal stresses, acting to self-relieve stress. The possibility of obtaining lower RS states in the build direction as a consequence of the influence of the microstructure should be considered when envisaging scanning strategies aimed at the mitigation of RS. KW - Additive manufacturing KW - LPBF KW - Residual stress KW - Inconel 718 KW - Kernel average misorientation KW - Texture PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-511769 DO - https://doi.org/10.1038/s41598-020-71112-9 VL - 10 IS - 1 SP - 14645 AN - OPUS4-51176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mishurova, Tatiana A1 - Cabeza, Sandra A1 - Thiede, Tobias A1 - Nadammal, Naresh A1 - Kromm, Arne A1 - Klaus, Manuela A1 - Genzel, Christoph A1 - Haberland, Christoph A1 - Bruno, Giovanni T1 - The influence of the support structure on residual stress and distortion in SLM Inconel 718 parts JF - Metallurgical and materials transactions A N2 - The effect of support structure and of removal from the base plate on the residual stress state in selective laser melted IN718 parts was studied by means of synchrotron X-ray diffraction. The residual stresses in subsurface region of two elongated prisms in as-built condition and after removal from the base plate were determined. One sample was directly built on a base plate and another one on a support structure. Also, the distortion on the top surface due to stress release was measured by contact profilometry. High tensile residual stress values were found, with pronounced stress gradient along the hatching direction. In the sample on support, stress redistribution took place after removal from the base plate, as opposed to simple stress relaxation for the sample without support. The sample on support structure showed larger distortion compared to sample without support. We conclude that the use of a support decreases stress values but stress-relieving heat treatments are still needed. KW - Additive manufacturing KW - SLM KW - Residual stress KW - Synchrotron X-ray diffraction KW - IN718 PY - 2018 DO - https://doi.org/10.1007/s11661-018-4653-9 SN - 1073-5623 VL - 49A IS - 7 SP - 3038 EP - 3046 PB - Springer Sciences & Business Media CY - New York, NY AN - OPUS4-45100 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Serrano Munoz, Itziar A1 - Evans, Alexander A1 - Mishurova, Tatiana A1 - Sprengel, Maximilian A1 - Pirling, T. A1 - Kromm, Arne A1 - Bruno, Giovanni T1 - The importance of subsurface residual stress in laser powder bed fusion IN718 JF - Advanced engineering materials N2 - The residual stress (RS) in laser powder bed fusion (LPBF) IN718 alloy samples produced using a 67°-rotation scan strategy is investigated via laboratory X-ray diffraction (XRD) and neutron diffraction (ND). The location dependence of the strain-free (d₀) lattice spacing in ND is evaluated using a grid array of coupons extracted from the far-edge of the investigated specimen. No compositional spatial variation is observed in the grid array. The calculated RS fields show considerable non-uniformity, significant stress gradients in the region from 0.6 to 2 mm below the surface, as well as subsurface maxima that cannot be accounted for via XRD. It is concluded that failure to determine such maxima would hamper a quantitative determination of RS fields by means of the stress balance method. KW - Laser powder bed fusion KW - Neutron and X-ray diffraction KW - Residual stress analysis KW - Strain-free lattice references KW - Stress balance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-532707 DO - https://doi.org/10.1002/adem.202100895 SN - 1615-7508 SN - 1527-2648 VL - 24 IS - 6 SP - 1 EP - 7 PB - Wiley-VCH CY - Weinheim AN - OPUS4-53270 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schröder, Jakob A1 - Evans, Alexander A1 - Luzin, V. A1 - Abreu Faria, G. A1 - Degener, Sebastian A1 - Polatidis, E. A1 - Čapek, J. A1 - Kromm, Arne A1 - Dovzhenko, G. A1 - Bruno, Giovanni T1 - Texture-based residual stress analysis of laser powder bed fused Inconel 718 parts JF - Journal of Applied Crystallography N2 - Although layer-based additive manufacturing methods such as laser powder bed fusion (PBF-LB) offer an immense geometrical freedom in design, they are typically subject to a build-up of internal stress (i.e. thermal stress) during manufacturing. As a consequence, significant residual stress (RS) is retained in the final part as a footprint of these internal stresses. Furthermore, localized melting and solidification inherently induce columnar-type grain growth accompanied by crystallographic texture. Although diffraction-based methods are commonly used to determine the RS distribution in PBF-LB parts, such features pose metrological challenges in their application. In theory, preferred grain orientation invalidates the hypothesis of isotropic material behavior underlying the common methods to determine RS. In this work, more refined methods are employed to determine RS in PBF-LB/M/IN718 prisms, based on crystallographic texture data. In fact, the employment of direction-dependent elastic constants (i.e. stress factors) for the calculation of RS results in insignificant differences from conventional approaches based on the hypothesis of isotropic mechanical properties. It can be concluded that this result is directly linked to the fact that the {311} lattice planes typically used for RS analysis in nickel-based alloys have high multiplicity and less strong texture intensities compared with other lattice planes. It is also found that the length of the laser scan vectors determines the surface RS distribution in prisms prior to their removal from the baseplate. On removal from the baseplate the surface RS considerably relaxes and/or redistributes; a combination of the geometry and the scanning strategy dictates the sub-surface RS distribution. KW - Additive manufacturing KW - Electron backscattered diffraction KW - Principal stress KW - Residual stress PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-578331 DO - https://doi.org/10.1107/S1600576723004855 SN - 1600-5767 VL - 56 IS - Pt 4 SP - 1076 EP - 1090 AN - OPUS4-57833 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -