TY - JOUR A1 - Lörchner, Dominique A1 - Kroh, L.W. A1 - Köppen, Robert T1 - First insights into electrochemical transformations of two triazine-based brominated flame retardants in model systems N2 - In this work, a study of electrochemical conversion was performed to elucidate different degradation pathways of the heterocyclic brominated flame retardants 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) and 2,4,6-Tris-(2,4,6-tribromo-phenoxy)-1,3,5-triazine (TTBP-TAZ). EC/MS was used to simulate the (bio)-transformation processes and to identify possible transformation products (TPs) which have never been reported before. For TDBP-TAZTO, six new TPs were observed after the electrochemical oxidation (applied potential of 0 to 1,800 mV vs. Pd/H2). In case of TTBP-TAZ, seven debromination products were generated with an applied potential of 0 to 2,200 mV vs. Pd/H2. The main degradation pathways confirmed by high resolution mass spectrometry for both compounds were hydroxylation, debromination as well as dehydrobromination. KW - Emerging/novel brominated flame retardant KW - Transformation products KW - Electrochemistry mass spectrometry PY - 2018 U6 - https://doi.org/10.1039/c8ay01968a SN - 1759-9660 SN - 1759-9679 VL - 10 IS - 43 SP - 5164 EP - 5170 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-46488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -