TY - JOUR A1 - Lörchner, Dominique A1 - Kroh, L.W. A1 - Köppen, Robert T1 - First insights into electrochemical transformations of two triazine-based brominated flame retardants in model systems N2 - In this work, a study of electrochemical conversion was performed to elucidate different degradation pathways of the heterocyclic brominated flame retardants 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) and 2,4,6-Tris-(2,4,6-tribromo-phenoxy)-1,3,5-triazine (TTBP-TAZ). EC/MS was used to simulate the (bio)-transformation processes and to identify possible transformation products (TPs) which have never been reported before. For TDBP-TAZTO, six new TPs were observed after the electrochemical oxidation (applied potential of 0 to 1,800 mV vs. Pd/H2). In case of TTBP-TAZ, seven debromination products were generated with an applied potential of 0 to 2,200 mV vs. Pd/H2. The main degradation pathways confirmed by high resolution mass spectrometry for both compounds were hydroxylation, debromination as well as dehydrobromination. KW - Emerging/novel brominated flame retardant KW - Transformation products KW - Electrochemistry mass spectrometry PY - 2018 U6 - https://doi.org/10.1039/c8ay01968a SN - 1759-9660 SN - 1759-9679 VL - 10 IS - 43 SP - 5164 EP - 5170 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-46488 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Kroh, L.W. A1 - Lörchner, Dominique T1 - 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione: kinetic studies and phototransformation products N2 - 1,3,5-Tris-(2,3-dibromopropyl)-1,3,5-triazine-2,4,6-trione (TDBP-TAZTO) is an emerging brominated flame retardant which is widely used in several plastic materials (electric and electronic equipment, musical instruments, automotive components). However, until today, no photochemical studies as well as the identification of possible phototransformation products (PTPs) were described in literature. Therefore, in this study, UV-(C) and simulated sunlight irradiation experiments were performed to investigate the photolytic degradation of TDBP-TAZTO and to identify relevant PTPs for the first time. The UV-(C) Irradiation experiments show that the photolysis reaction follows a first-order kinetic model. Based on this, the photolysis rate constant k as well as the half-life time t1/2 were calculated to be k = (41 ± 5 ×10−3) min−1 and t1/2=(17±2) min. In comparison, a minor degradation of TDBP-TAZTO and no formed phototransformation products were obtained under simulated sunlight. In order to clarify the photochemical behavior, different chemicals were added to investigate the influence on indirect photolysis: (i) H2O2 for generation of hydroxyl radicals and (ii) two quenchers (2-propanol, sodium azide) for scavenging oxygen species which were formed during the irradiation experiments. Herein, nine previously unknown PTPs of TDBP-TAZTO were detected under UV-(C) irradiation and identified by HPLC-(HR)MS. As a result, debromination, hydroxylation, and dehydrobromination reactions could be presumed as the main degradation pathways by high-resolution mass spectrometry. The direct as well as the OH radical-induced indirect photolysis were observed. KW - UV irradiation KW - HRMS KW - Debromination KW - Hydroxylation KW - Emerging brominated flame retardant PY - 2019 U6 - https://doi.org/10.1007/s11356-019-04815-w SN - 0944-1344 VL - 26 IS - 16 SP - 15838 EP - 15846 PB - Springer AN - OPUS4-47857 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -