TY - CONF A1 - Krietsch, Arne A1 - Krause, U. A1 - Gabel, D. A1 - Abbas, Z. A1 - Dufaud, O. T1 - Quasi-static dispersion of dusts for the determination of lower explosion limits of hybrid mixtures T2 - Proceedings of the 13th Symposium International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions N2 - Knowledge of explosion limiting concentration of explosible materials is necessary for the design of explosion protection measures. Currently employed methods of testing MEC of a dust cloud or LEL of a hybrid mixture are based on arbitrary assumptions and possess technical limitations that often lead to values of MEC/LEL, which are unrealistically low or poorly reproducible. This contribution presents an improved method for experimental determination of MEC of a combustible dust cloud or LEL of a flammable gas or hybrid mixture. The new set-up operates under laminar conditions and allows a uniform suspension of dust particles in an open top acrylic glass tube. Dust concentration is measured with the help of infrared sensors installed a few centimeters above and below the ignition source. In order to evaluate the dependence of MEC on flow front velocity, MEC of lycopodium was determined at four flow velocities. The results show that the flow field intensity does not significantly influence the MEC of lycopodium for the flow ranges tested in this work. Moreover, LEL of hybrid mixtures of lycopodium and methane was also tested at flow velocities of 4.7 cm/s, 5.8 cm/s, 7 cm/s and 11 cm/s and compared with the values obtained from other sources. The results suggest that the requirement of high energy pyrotechnical igniter may be relinquished, provided that a truly homogeneous suspension of dust particles could be achieved. Moreover, the effect of relative amount of dust and gas, on the course of ignition and flame propagation in hybrid mixtures at their LEL, was studied by the help of high speed videos. For hybrid mixtures of carbonaceous dusts (like lycopodium) at their LEL, ignition occurs in the gas phase, however, flame propagation is only possible through a two-way interaction of dust and gas during the course of combustion. T2 - 13th Symposium International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE) CY - Online meeting DA - 27.07.2020 KW - Dust explosions KW - Gas explosions KW - Lower explosion limit KW - Hybrid mixtures PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-540955 DO - https://doi.org/10.7795/810.20200724 SP - 750 EP - 764 PB - Physikalisch-Technische Bundesanstalt AN - OPUS4-54095 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Santandrea, A. A1 - Vignes, A. A1 - Krietsch, Arne A1 - Brunello, D. A1 - Perrin, L. A1 - Laurent, A. A1 - Dufaud, O. T1 - Evaluating the explosion severity of nanopowders: International standards versus reality JF - Process Safety and Environmental Protection N2 - The maximum explosion overpressure and the maximum rate of pressure rise, which characterize thedust explosion severity, are commonly measured in apparatuses and under specific conditions defined byinternational standards. However, those standards conditions, designed for micropowders, may not befully adapted to nanoparticles. Investigations were conducted on different nanopowders (nanocellulose,carbon black, aluminum) to illustrate their specific behaviors and highlight the potential inadequacyof the standards. The influence of the sample preparation was explored. Various testing procedureswere compared, focusing on the dust cloud turbulence and homogeneity. Dust dispersion experimentsevidenced the importance of the characterization of the dust cloud after dispersion, due to the frag-mentation of agglomerates, using metrics relevant with nanoparticles reactivity (e.g. surface diameterinstead of volume diameter). Moreover, the overdriving phenomenon (when the experimental resultsbecome dependent of the ignition energy), already identified for micropowders, can be exacerbated fornanoparticles due to their low minimum ignition energy and to the high energy used under standardconditions. It was evidenced that for highly sensitive nanopowders, pre-ignition phenomenon can occur.Finally, during severe explosions and due to a too long opening delay of the ‘fast acting valve’, the flamecan go back to the dust container. KW - Dust explosions KW - Gas explosions KW - Minimum ignition temperature KW - Hybrid mixtures PY - 2020 DO - https://doi.org/10.1016/j.psep.2020.04.011 VL - 138 SP - 279 EP - 291 PB - Elsevier B.V. AN - OPUS4-50944 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Krietsch, Arne A1 - Schröder, Volkmar T1 - Entwicklungen zu Bestimmungsverfahren für sicherheitstechnische Kenngrössen hybrider Gemische T2 - VDI-Fachtagung "Sichere Handhabung brennbarer Stäube" N2 - Zur Bestimmung sicherheitstechnischer Kenngrößen (STK) von hybriden Gemischen (Gemisch aus mindestens zwei brennbaren Phasen, wie z.B. Staub/Gas- oder Gas/Dampf-Gemisch) existieren bislang keine einheitlichen, genormten Prüfmethoden. Die Normen und Regelwerke zur Bestimmung der STK von einphasigen brennbaren Systemen (Staub, Gas, Dampf) unterscheiden sich teilweise erheblich. Beispielsweise sind in den jeweiligen Normen für Stäube, Gase und Dämpfe unterschiedliche Zündquellen und Zündenergien definiert. Des Weiteren unterscheiden sich die in den Normen definierten Prüfabläufe bei der Gemischherstellung. Bei der Entwicklung einer einheitlichen Norm für hybride Gemische muss der Einfluss dieser beiden Parameter ermittelt werden, um die Vergleichbarkeit mit den STK der einzelnen Komponenten Gas, Staub und Dampf gewährleisten zu können und bisherige Erkenntnisse zu hybriden Gemischen interpretieren und bewerten zu können. T2 - VDI-Fachtagung "Sichere Handhabung brennbarer Stäube" CY - Online meeting DA - 04.11.2020 KW - Explodierender Draht KW - Sicherheitstechnische Kenngrößen KW - Hybride Gemische PY - 2020 SN - 978-3-18-092376-5 SN - 0083-5560 VL - 2376 SP - 3 EP - 15 PB - VDI Verlag GmbH CY - Düsseldorf AN - OPUS4-51789 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Spitzer, Stefan A1 - Askar, Enis A1 - Krietsch, Arne A1 - Schröder, Volkmar T1 - Comparative study on standardized ignition sources used for explosion testing T2 - 13th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions N2 - For the determination of safety characteristics of gases, vapors and dusts different types of ignition sources are used in international standards and guidelines. Table 1 compares technical relevant ignition sources with their main features. The paper presents test results of a comparative calorimetric and visual study between four different types of ignition sources. The ignition procedures were analyzed visually with a high-speed camera and electric recordings. In addition to that, the influence of the electrode-orientation, -distance as well as ignition energy on the reproducibility of the exploding wire igniter was tested. The exploding wire is already in use for standardized determination of safety characteristics of gases, first tests on the suitability of the exploding wire igniter for dust testing have been carried out by Scheid et al. Using the exploding wire, the ignition energy can be varied from 2 to 10 000 J (2 x 5 000 J) and thus it could be used for gases, vapors, dusts and hybrid mixtures. Moreover it can be used at high initial pressures and it is the only ignition source with an easily measurable ignition energy release. Furthermore, it does not introduce another chemical reaction into the system. Finally, a proposal for a standard ignition source for explosion tests on hybrid mixtures is derived from the test results. T2 - 13th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions CY - Online meeting DA - 27.07.2020 KW - Ignition source KW - Exploding Wire KW - Hybrid mixtures KW - Safety characteristics determination PY - 2020 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-517908 UR - https://oar.ptb.de/files/download/5f3e662f4c93901010006dbf DO - https://doi.org/10.7795/810.20200724 VL - 13 SP - 864 EP - 875 PB - PTB Physikalisch-Technische Bundesanstalt Braunschweig AN - OPUS4-51790 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -