TY - JOUR A1 - Kricheldorf, H.R. A1 - Eggerstedt, S. A1 - Krüger, Ralph-Peter T1 - Macrocycles, 6a / MALDI-TOF mass spectrometry of tin-initiated macrocyclic polylactones in comparison to classical mass-spectroscopic methods PY - 1999 SN - 1022-1352 SN - 1521-3935 VL - 200 IS - 6 SP - 1284 EP - 1291 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2166 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Hauser, K. A1 - Krüger, Ralph-Peter A1 - Schulz, Günter T1 - Macrocycles 12. Ring-Opening Polycondensations of Tin-Containing Macrocycles with Bis(Thioarylester)s N2 - 2,2-Dibutyl-2-stanna-1,3-dioxepane (DSDOP) was polycondensed with bis(4-chlorothiophenyl) suberat under various reaction conditions, but only moderate molecular weights (Mn 10000) were obtained. The MALDI-TOF mass spectrosmetry revealed the formation of cyclic oligo- and polyesters in addition to linear species having OH, CO2H, and unreacted 4-chlorothiophenyl ester endgroups. Furthermore, -Caprolactone (-CL) was polymerized with DSDOP as the initiator at monomer/initiator (M/I) ratios of 20 and 50. The resulting tin-containing macrocyclic polylactones were reacted with sebacic acid bis(4-thiocresyl)ester at three different temperatures and with different reaction times. Analogous polycondensations were conducted with suberic acid bis(4-chlorothiophenyl) ester. The presence of thioarylester endgroups in the isolated polyesters was checked by 1H NMR spectroscopy. The highest conversions were found at long reaction times (24 or 72 hours), or after the addition of pyridine and N,N-dimethylaminopyridine as catalysts. Despite high conversions, the number average molecular weights (Mn's) did not exceed values around 20000. Even in the samples having the highest molecular weights, unreacted 4-chlorothiophenylester endgroups were detected by GPC measurements evaluated with a UV-detector. It is concluded that both factors, cyclization and incomplete conversion, contribute to the limitation of the chain growth. KW - Ring-Opening Polycondensations KW - Macrocycles KW - Polyesters PY - 2000 U6 - https://doi.org/10.1081/MA-100101099 SN - 1060-1325 SN - 1520-5738 VL - 37 IS - 4 SP - 379 EP - 394 PB - Taylor & Francis CY - Philadelphia, PA AN - OPUS4-2167 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H. A1 - Probst, N. A1 - Schwarz, G. A1 - Schulz, Günter A1 - Krüger, Ralph-Peter T1 - New Polymer Syntheses - 107. Aliphatic Poly(thio ester)s by Ring-Opening Polycondensation of 2-Stanna-1,3-Dithiacycloalkanes N2 - We prepared 2,2-dibutyl-2-stanna-1,3-dithiacycloalkanes from dibutyltin oxide and ,-dimercaptoalkanes. Heterocycles with five-, six-, seven-, or nine-ring members were used as bifunctional monomers for polycondensations with aliphatic dicarboxylic acid chlorides. These polycondensations conducted in bulk were highly exothermic and yielded poly(thio ester)s with number average molecular weights (Mn's) in the range of 5000-30,000 Da. These poly(thio ester)s proved to be rapidly crystallizing materials with melting temperatures in the range of 90-150 °C. In addition to the success of the new synthetic approach, two interesting and unpredictable results were obtained. All volatile species detectable by matrix assisted laser desorption induced-time of flight (MALDI-TOF) mass spectrometry were cyclic oligo- and poly(thio ester)s. Second, several polyesters showed a reversible first-order change of the crystal modification as identified by differential scanning calorimetry measurements and X-ray scattering with variation of the temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3656-3664, 2000 KW - Poly(thio-ester)s KW - Ring-opening polycondensation KW - Macrocycles KW - Change of crystal structure PY - 2000 U6 - https://doi.org/10.1002/1099-0518(20001001)38:19<3656::AID-POLA190>3.0.CO;2-M SN - 0360-6376 SN - 0887-624X VL - 38 IS - 19 SP - 3656 EP - 3664 PB - Wiley CY - Hoboken, NJ AN - OPUS4-2170 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Shaik, A.-A. A1 - Richter, M. A1 - Kricheldorf, H. A1 - Krüger, Ralph-Peter T1 - New polymer syntheses - CIX. Biodegradable, alternating copolyesters of terephthalic acid, aliphatic dicarboxylic acids, and alkane diols N2 - Copolyesters with an alternating sequence of terephthalic acid and aliphatic dicarboxylic acids were prepared with three different methods. First, dicarboxylic acid dichlorides were reacted with bis(2-hydroxyethyl)terephthalate (BHET) in refluxing 1,2-dichlorobenzene. Second, the same monomers were polycondensed at 0-20 °C in the presence of pyridine. Third, dicarboxylic acid dichlorides and silylated BHET were polycondensed in bulk. Only this third method gave satisfactory molecular weights. Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry revealed that the copolyesters prepared by the pyridine and silyl methods might have contained considerable fractions of cyclic oligoesters and polyesters despite the absence of transesterification and backbiting processes. The alternating sequences and thermal properties were characterized with 1H NMR spectroscopy and differential scanning calorimetry measurements, respectively. In agreement with the alternating sequence, all copolyesters proved to be crystalline, but the crystallization was extremely slow [slower than that of poly(ethylene terephthalate)]. A second series of alternating copolyesters was prepared by the polycondensation of silylated bis(4-hydroxybut- yl)terephthalate with various aliphatic dicarboxylic acid dichlorides. The resulting copolyesters showed significantly higher rates of crystallization, and the melting temperatures were higher than those of the BHET-based copolyesters. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3371-3382, 2001 KW - Poly(ethylene terephthalate) KW - Poly(butylene terephthalate) KW - Alternating sequence KW - Macrocycles KW - Crystallization KW - Biodegradable polyesters PY - 2001 U6 - https://doi.org/10.1002/pola.1320 SN - 0360-6376 SN - 0887-624X VL - 39 IS - 19 SP - 3371 EP - 3382 PB - Wiley CY - Hoboken, NJ AN - OPUS4-2173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Böhme, S. A1 - Schwarz, G. A1 - Krüger, Ralph-Peter A1 - Schulz, Günter T1 - Macrocycles 18. The Role of Cyclization in Syntheses of Poly(ether-sulfone)s N2 - Poly(ether-sulfone)s having an identical backbone were prepared by four different methods. First, silylated bisphenol A (BSBA) was polycondensed with 4,4'-difluorodiphenyl sulfone (DFDPS) and K2CO3 in N-methylpyrrolidone with variation of the temperature. Second, analogous polycondensation were conducted using CsF as catalyst (and no K2CO3). Third, CsF-catalyzed polycondensations BSBA and DFDPS were conducted in bulk up to 290 C. Fourth, free bisphenol was polycondensed with DFDPS or 4,4'-dichlorodiphenyl sulfone and K2CO3 in DMSO with azeotropic removal of water. MALDI-TOF mass spectroscopy revealed that the first method mainly yielded cyclic poly(ether-sulfone)s which were detected up to masses around 13 000 Da. These and other results suggest that these polycondensations take a kinetically kontrolled course at tempeatures 145 C. This interpretation is also valid for the fourth method where high yields of cycles were obtained with DFDPS. With the less reactive 4,4'-dichlorodiphenyl sulfone lower conversions, lower molecular weights and lower fractions of cycles were found. In contrast to KF (resulting from K2CO3) CsF cleaves the poly(ether sulfone) backbone at temperatures > 145 C. Smaller amounts of smaller cycles were found in these CsF-catalyzed polycondensations which were in this case the result of thermodynamically controlled "back-biting degradation". PY - 2001 U6 - https://doi.org/10.1021/ma010218l SN - 0024-9297 SN - 1520-5835 VL - 34 SP - 8886 EP - 8893 PB - American Chemical Society CY - Washington, DC AN - OPUS4-2176 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Rabenstein, M. A1 - Langanke, D. A1 - Schwarz, G. A1 - Schmidt, M. A1 - Maskos, M. A1 - Krüger, Ralph-Peter T1 - Ring-closing polycondensations N2 - The role of cyclization in polycondensations is discussed for two different scenarios: thermodynamically-controlled polycondensation (TCPs) on the one hand and kinetically-controlled polycondensations (KCPs) on the other. The classical Carothers–Flory theory of step-growth polymerization does not include cyclization reactions. However, TCPs involve the formation of cycles via ‘back-biting degradation’, and when the ring–chain equilibrium is on the side of the cycles the main reaction products of the TCP will be cyclic oligomers. Two groups of examples are discussed: polycondensations of salicyclic acid derivatives (e.g. aspirin) and polycondensations of dibutyltin derivatives with long {alpha}-, {omega}-diols or dicarboxylic acids. Furthermore, various kinetically-controlled syntheses of polyesters and polyamides were studied and carefully optimized in the direction of high molecular weights. High fractions of cyclic oligomers and polymers were found by MALDI-TOF mass spectrometry, and their fractions increased with optimization of the process for molecular weight. These results disagree with the Carothers–Flory theory but agree with the theoretical background of the Ruggli–Ziegler dilution method (RZDM). When poly(ether-sulfone)s were prepared from 4,4'-difluorodiphenylsulfone and silylated bisphenol-A two different scenarios were found. With CsF as catalyst at a temperature of more than 145°C cyclic oligoethers were formed under thermodynamic control. When the polycondensation was promoted with K2CO3 in N-methylpyrolidone at ?145°C the formation of cyclic oligoethers and polyethers occurred under kinetic control. A new mathematical formula is presented correlating the average degree of polymerization with the conversion and taking into account the competition between cyclization and propagation. PY - 2001 U6 - https://doi.org/10.1088/0954-0083/13/2/312 SN - 0954-0083 SN - 1361-6412 VL - 13 SP - S123 EP - S136 PB - Sage Publ. CY - London AN - OPUS4-2178 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Böhme, S. A1 - Krüger, Ralph-Peter T1 - Macrocycles, 16a - Macrocyclic Dibutyltin Dicarboxylates via Thermodynamically Controlled Polycondensations N2 - Various dibutyltin derivatives were polycondensed with aliphatic ,-dicarboxylic acids having chain lengths from 4 (succinic acid) to 22 carbon atoms. White crystalline products were obtained from all experiments, and the structure of the products was independent of the synthetic method. Viscosity measurements revealed low molecular weights (n 1 500 Da) in all cases. Vapor pressure osmometry (VPO) measurements and matrix-assisted laser desorption time-of-flight (MALDI-TOF) mass spectrometry proved that cyclic dimers and trimer were formed from dicarboxylic acids having 6 to 16 carbons, but mainly the monomeric cycle from docosane dioic acid. Heating to 250°C did not change the structure. Therefore, the results indicate that the macrocycles are the result of a thermodynamically controlled ring-closing polycondensation. This means that linear high-molecular weight poly(dibutyltin dicarboxylate)s cannot exist above room temperature. KW - Macrocyclics KW - MALDI KW - Oligomers KW - Polycondensation KW - Thermodynamics PY - 2002 SN - 1022-1352 SN - 1521-3935 VL - 203 IS - 2 SP - 313 EP - 318 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-2181 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Ralph-Peter A1 - Kricheldorf, H.R. A1 - Böhme, S. T1 - Macrocycles 16. Macrocyclic Dibutyltin Dicarboxylates by Ring-Closing Polycondensation N2 - Various dibutyltin derivatives were polycondensed with aliphatic ,-dicarboxylic acids having chain lengths from 4 (succinic acid) to 22 carbon atoms. White crystalline products were obtained from all experiments, and the structure of the products was independent of the synthetic method. Viscosity measurements revealed low molecular weights (n 1 500 Da) in all cases. Vapor pressure osmometry (VPO) measurements and matrix-assisted laser desorption time-of-flight (MALDI-TOF) mass spectrometry proved that cyclic dimers and trimer were formed from dicarboxylic acids having 6 to 16 carbons, but mainly the monomeric cycle from docosane dioic acid. Heating to 250°C did not change the structure. Therefore, the results indicate that the macrocycles are the result of a thermodynamically controlled ring-closing polycondensation. This means that linear high-molecular weight poly(dibutyltin dicarboxylate)s cannot exist above room temperature. PY - 2002 U6 - https://doi.org/10.1002/1521-3935(20020101)203:2<313::AID-MACP313>3.0.CO;2-V SN - 1022-1352 SN - 1521-3935 VL - 203 IS - 2 SP - 313 EP - 318 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1796 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Ralph-Peter A1 - Kricheldorf, H.R. A1 - Böhme, S. T1 - Macrocyclic Dibutyltin Dicarboxylates via Thermodynamically Controlled Polycondensations KW - Macrocyclics KW - MALDI KW - Oligomers KW - Polycondensation KW - Thermodynamics PY - 2002 SN - 1022-1352 SN - 1521-3935 IS - 203 SP - 313 EP - 318 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-1656 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kricheldorf, H.R. A1 - Vakhtangishvili, L. A1 - Schwarz, G. A1 - Schulz, Günter A1 - Krüger, Ralph-Peter T1 - Macrocycles 25. Cyclic poly(ether sulfone)s derived from 4-tert-butylcatechol N2 - Poly(ether sulfone)s were prepared by polycondensation of silylated 4-tert-butylcatechol and 4,4?-difluorodiphenylsulfone in N-methylpyrrolidone. The feed ratio and the reaction time were varied to study the influence of stoichiometry and conversion on molecular weight and extent of cyclization. Molecular weights and molecular weight distributions (MWD)s were characterized by SEC measurements calibrated with polystyrene. Light scattering confirmed that calibration with polystyrene gives reasonable results and revealed a tendency towards a bimodal MWD for the samples rich in cycles. The MALDI-TOF mass spectrometry indicated that the extent of cyclization increased with higher conversion and with optimization of the stoichiometry. This interpretation was confirmed by 1H NMR endgroup analyses. For the samples with the highest molar masses only mass peaks of cycles were found, which were detectable up to 20 000 Da before and up to 27 000 Da after fractionation. Via the pseudo-high dilution method low molar mass poly(ether sulfone) containing more than 95 mol% of cycles were prepared, and even these low molar mass samples had broad MWDs. DSC measurements indicated that the glass transition temperatures depend on the structure of the endgroups and increase with higher fractions of cycles. KW - Poly(ether sulfone)s KW - Polycondensation KW - MALDI-TOF mass spectrometry PY - 2003 U6 - https://doi.org/10.1016/S0032-3861(03)00410-5 SN - 0032-3861 SN - 1873-2291 VL - 44 SP - 4471 EP - 4480 PB - Springer CY - Berlin AN - OPUS4-2623 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -