TY - JOUR A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Ziegler, Mathias T1 - Laser-projected photothermal thermography using thermal wave field interference for subsurface defect characterization N2 - The coherent superposition of two anti-phased thermal wave fields creates a zone of destructive interference which is extremely sensitive to the presence of defects without any reference measurements. Combining a high power laser with a spatial light modulator allows modulating phase and amplitude of an illuminated surface that induces spatially and temporally controlled thermal wave fields. The position and depth of defects are reconstructed from analysis of the Amplitude and Phase of the resulting photothermal signal. The proposed concept is experimentally validated and supported by numerical modeling. KW - Thermal waves KW - Active thermography KW - DMD KW - Spatial light modulator KW - Subsurface defects PY - 2016 UR - http://scitation.aip.org/search?value1=laser+projected+photothermal&option1=all&option912=resultCategory&value912=ResearchPublicationContent&operator8=AND&option8=pub_serialIdent&value8=aip%2Fjournal%2Fapl&qs=true U6 - https://doi.org/10.1063/1.4963139 SN - 0003-6951 VL - 109 IS - 12 SP - 123504-1 EP - 123504-4 PB - AIP Publishing CY - Melville, New York AN - OPUS4-37590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Gaal, Mate A1 - Bartusch, Jürgen A1 - Schadow, Florian A1 - Beck, Uwe A1 - Daschewski, M. A1 - Kreutzbruck, M. T1 - Airborne ultrasonic systems for one-sided inspection using thermoacoustic transmitters N2 - Airborne ultrasonic inspection is performed in through transmission, where the test piece (e.g. adhesive joint or polymer-based composite plate) is placed between the transmitter and the receiver. However, many structures with difficult shapes allow only one-sided inspection. The strong reflection of the signal from the surface overshadows the signals from the inside, so that broadband pulses are required. Thermoacoustic transmission, where the thermal energy of an electrically heated electrode is transformed into the acoustic energy of an ultrasonic wave, opens the possibility to excite broadband pulses and thus to inspect objects with one-sided access. We present various thermoacoustic transducers consisting of an electrically conductive film on a solid substrate. The first type of transducer is a transmitter with an indium-tin-oxide electrode on a glass substrate combined with a laser Doppler vibrometer as a receiver. The second type of transducer combines thermoacoustic transmission and piezoelectric reception, having a titanium electrode as a transmitter deposited onto charged cellular polypropylene serving as a piezoelectric receiver. Using a focusing thermoacoustic transmitter and a separate cellular polypropylene receiver, a through-transmission inspection of a 4 mm thick CFRP test piece with inserts as small as 1 mm was performed. The same emitter and a laser vibrometer as a receiver were used for a one-sided inspection of a Plexiglas block with a cross hole at 15 mm depth. A twin probe consisting of a thermoacoustic transmitter on a cellular polypropylene receiver was applied to a profile measurement on a step wedge with flat bottom holes. The smallest detected diameter of a flat bottom hole was 1 mm. Sound pressure level above 140dB was achieved with each of these transmitters. Thermoacoustic transmitters enable a step towards one-sided air-coupled ultrasonic inspection. T2 - IEEE International Ultrasonics Symposium CY - Tours, France DA - 18.09.2016 KW - Airborne KW - Air-coupled KW - Ultrasonic transducer KW - Thermoacoustic KW - Ferroelectret PY - 2016 SN - 978-1-4673-9897-8 SN - 1948-5719 SP - (online publication) 1 EP - 4 AN - OPUS4-37620 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Rahammer, M. A1 - Myrach, Philipp A1 - Maierhofer, Christiane A1 - Busse, G. A1 - Kreutzbruck, M. T1 - Auflösungsgrenzen der Lockin-Thermografie zur Prüfung von Faserkunststoffverbunden N2 - Aktive Thermografie mit Lockin-Anregung ist ein zerstörungsfreies Prüfverfahren, das insbesondere auch die Prüfung von kohlenstofffaserverstärkten Kunststoffen ermöglicht. Um eine Standardisierung dieses Verfahrens voranzubringen, wurden im Rahmen eines Forschungsprojektes umfangreiche Untersuchungen zur Validierung des Verfahrens durchgeführt. Für die Anregungsmethoden optisch und Ultraschall wurden die wichtigsten Parameter systematisch untersucht. Auf der Auswertungsseite ist dies z.B. der Einfluss der spektralen Empfindlichkeit verschiedener Kamerasysteme. Für die Anregungen sind unter anderem die Einflüsse von Anregungsenergie und Ultraschallfrequenz untersucht worden. Auch Materialparameter, wie der Lagenaufbau bei CFK-Probekörpern, beeinflussen die Ergebnisse stark. T2 - 24. Stuttgarter Kunststoffkolloquium CY - Stuttgart, Germany DA - 25.02.2015 KW - Zerstörungsfreie Prüfung KW - Lockin-Thermografie KW - Faserkunststoffverbunde KW - Non-destructive testing KW - Lockin-Thermography KW - Fibre-reinforced plastics PY - 2015 SP - 1 EP - 7 AN - OPUS4-32876 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pohl, Rainer A1 - Commandeur, C. A1 - Erthner, Thomas A1 - Kreutzbruck, M. A1 - Pelkner, Matthias T1 - GMR-Streufluss-Prüfsystem zur Detektion verdeckter Fehler in Feinblechen N2 - BAM und TATA Steel untersuchen gemeinsam, ob sich die Prüfung von ferritischen Feinblechen mit einer Stärke von etwa 0,2 mm während der Fertigung durch den Einsatz von GMR-Sensorik verbessern lässt. Hierzu wurde eine Vorstudie an Feinblechen mit eingebrachten Mikronuten durchgeführt. Diese Nuten variieren in ihrer Tiefe zwischen 5 μm und 60 μm und wurden verdeckt mit ZfP-angepassten GMR-Sensorarrays geprüft. Die Ergebnisse der Vorstudie zeigten, dass bei verdeckter Prüfung schon kleinste Defekte mit einer Tiefe von 10 μm - gleichbedeutend mit einer Restwanddicke von 90 % – mit einem SNR > 6 dB detektiert werden konnten, wobei der Abstand der Prüfsonde zur Oberfläche bis zu 500 μm betrug. Zudem wurden in der Vorstudie Untersuchungen zur Prüfgeschwindigkeit und Praxistauglichkeit durchgeführt. Basierend auf den hier gewonnenen Ergebnissen wird ein erster Demonstrator für eine zuverlässige Prüfung eines Teilbereiches von 50 mm des Feinbleches innerhalb einer Produktionslinie aufgebaut. Zum Einsatz kommen Prüfsonden mit jeweils 24 GMR-Sensorelementen. Hierbei wird das Ziel einer umfassenden Prüfung des Feinblechs über die gesamte Breite von 1200 mm angestrebt. Eine besondere Herausforderung stellt dabei die hohe Anzahl von mehr als 1000 Sensorelementen dar. Das hierfür entwickelte Prüfkonzept umfasst neben einer angepassten Erzeugung des Magnetfeldes die Entwicklung einer geeigneten schnellen und sicheren Elektronik für die neuen Mehrkanalprüfköpfe. Neben der Vorstellung des Prüfkonzeptes und seiner Eigenschaften vergleichen wir die erzielten Prüfergebnisse an verschiedenen Vergleichsfehlern mit denen der Vorstudie. T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 11.05.2015 KW - Streuflussprüfung KW - GMR PY - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-343354 SN - 978-3-940283-68-9 IS - DGZfP BB 152 SP - Mi.2.B.3, 1 EP - 9 AN - OPUS4-34335 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Ziegler, Mathias T1 - Laser projected photothermal thermography for characterizing hidden defects N2 - For the last 20 years active thermography has developed into a standard method in non-destructive material testing. It has become possible to detect defects such as cracks, voids, or even material inhomogeneities. Until now, it is still difficult to quantify subsurface or hidden defects in size due to the diffusive nature of heat flow within a solid. Facing this issue, lockin thermography and other photothermal techniques have been established. They are based on exciting a sample periodically (e.g. with a halogen lamp), causing a controlled periodical heat flow and thereby representing strongly damped thermal waves. These techniques make use of interference and reflection of thermal waves which allow enhancing depth resolution. So far, only the temporal component of the light source was modified to achieve a defined vertical heat flow – In contrast, we propose a novel technique in which we are able to control both: time and space. This technique enables us to exploit the possibilities of coherent thermal wave shaping. We achieve that by combining a spatial light modulator (SLM) with a high power laser. This approach allows us to launch a set of individually controlled and fully coherent high energy thermal waves into the sample volume. That means, we intentionally use wave propagation throughout the sample’s material in both - vertical and lateral direction. As one possible application, we use a thermal waves’ interference effect of two phase shifted wave patterns to detect the position of hidden defects. The wave patterns are positioned with a certain distance and a 180° phase shift to each other creating an amplitude depletion zone right in the middle of the two patterns. When a defect is brought unsymmetrically into the depletion zone, the lateral heat flow is disturbed. If the sample is now moved through the depletion zone, a defect can be easily characterized. Exciting periodically while controlling simultaneously phase and amplitude enables us to have a defined thermal wave propagation throughout the sample which means thermal waves can be controlled almost like acoustical or optical waves. This offers the opportunity to transfer known technologies from wave shaping techniques to thermography methods. T2 - 19th World Conference of Non-Destructive Testing 2016 CY - München, Germany DA - 13.06.2016 KW - Thermal waves KW - DMD KW - Active thermography KW - SLM PY - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-365702 SP - Th.4.I.2 - 1 EP - Th.4.I.2 - 6 AN - OPUS4-36570 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Studemund, T. A1 - Ziegler, Mathias T1 - Thermal wave interference with high-power VCSEL arrays for locating vertically oriented subsurface defects N2 - Among the photothermal methods, full-field thermal imaging is used to characterize materials, to determine thicknesses of layers, or to find inhomogeneities such as voids or cracks. The use of classical light sources such as flash lamps (impulse heating) or halogen lamps (modulated heating) led to a variety of nondestructive testing methods, in particular, lock-in and flash-thermography. In vertical-cavity surface-emitting lasers (VCSELs), laser light is emitted perpendicularly to the surface with a symmetrical beam profile. Due to the vertical structure, they can be arranged in large arrays of many thousands of individual lasers, which allows power scaling into the kilowatt range. Recently, a high-power yet very compact version of such a VCSEL-array became available that offers both the fast timing behavior of a laser as well as the large illumination area of a lamp. Moreover, it allows a spatial and temporal control of the heating because individual parts of the array can be controlled arbitrarily in frequency, amplitude, and phase. In conjunction with a fast infrared camera, such structured heating opens up a field of novel thermal imaging and testing methods. As a first demonstration of this approach, we chose a testing problem very challenging to conventional thermal infrared testing: The detection of very thin subsurface defects perpendicularly oriented to the surface of metallic samples. First, we generate destructively interfering thermal wave fields, which are then affected by the presence of defects within their reach. It turned out that this technique allows highly sensitive detection of subsurface defects down to depths in excess of the usual thermographic rule of thumb, with no need for a reference or surface preparation. T2 - 44TH ANNUAL REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION CY - Provo, Utah DA - 16.07.2017 KW - Laser applications KW - Thermography KW - VCSEL KW - Subsurface defects PY - 2018 SN - 978-0-7354-1644-4 U6 - https://doi.org/10.1063/1.5031547 SN - 0094-243X VL - 1949 SP - UNSP 060001, 1 EP - 8 AN - OPUS4-45171 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Thiel, Erik A1 - Kreutzbruck, M. A1 - Ziegler, Mathias T1 - Spatial and temporal control of thermal waves by using DMDs for interference based crack detection N2 - Active Thermography is a well-established non-destructive testing method and used to detect cracks, voids or material inhomogeneities. It is based on applying thermal energy to a samples’ surface whereas inner defects alter the nonstationary heat flow. Conventional excitation of a sample is hereby done spatially, either planar (e.g. using a lamp) or local (e.g. using a focused laser) and temporally, either pulsed or periodical. In this work we combine a high power laser with a Digital Micromirror Device (DMD) allowing us to merge all degrees of freedom to a spatially and temporally controlled heat source. This enables us to exploit the possibilities of coherent thermal wave shaping. Exciting periodically while controlling at the same time phase and amplitude of the illumination source induces – via Absorption at the sample’s surface - a defined thermal wave propagation through a sample. That means thermal waves can be controlled almost like acoustical or optical waves. However, in contrast to optical or acoustical waves, thermal waves are highly damped due to the diffusive character of the thermal heat flow and therefore limited in penetration depth in relation to the achievable resolution. Nevertheless, the coherence length of thermal waves can be chosen in the mmrange for modulation frequencies below 10 Hz which is perfectly met by DMD technology. This approach gives us the opportunity to transfer known technologies from wave shaping techniques to thermography methods. We will present experiments on spatial and temporal wave shaping, demonstrating interference based crack detection. T2 - Photonics West 2016, OPTO, 9761 CY - San Francisco, CA, USA DA - 15.02.2016 KW - Active thermography KW - Thermal wave KW - Spatial light modulation KW - Crack detection KW - DMD KW - DMD coupled laser PY - 2016 U6 - https://doi.org/10.1117/12.2210918 SN - 0277-786X VL - 9761 SP - 97610N-1 EP - 97610N-13 AN - OPUS4-35587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sonntag, Nadja A1 - Skrotzki, Birgit A1 - Stegemann, Robert A1 - Löwe, Peter A1 - Kreutzbruck, M. T1 - The role of surface topography on deformation-induced magnetization under inhomogeneous elastic-plastic deformation N2 - It is widely accepted that the magnetic state of a ferromagnetic material may be irreversibly altered by mechanical loading due to magnetoelastic effects. A novel standardized nondestructive testing (NDT) technique uses weak magnetic stray fields, which are assumed to arise from inhomogeneous deformation, for structural health monitoring (i.e., for detection and assessment of damage). However, the mechanical and microstructural complexity of damage has hitherto only been insufficiently considered. The aim of this study is to discuss the phenomenon of inhomogeneous “self-magnetization” of a polycrystalline ferromagnetic material under inhomogeneous deformation experimentally and with stronger material-mechanical focus. To this end, notched specimens were elastically and plastically deformed. Surface magnetic states were measured by a three-axis giant magnetoresistant (GMR) sensor and were compared with strain field (digital image correlation) and optical topography measurements. It is demonstrated that the stray fields do not solely form due to magnetoelastic effects. Instead, inhomogeneous plastic deformation causes topography, which is one of the main origins for the magnetic stray field formation. Additionally, if not considered, topography may falsify the magnetic signals due to variable lift-off values. The correlation of magnetic vector components with mechanical tensors, particularly for multiaxial stress/strain states and inhomogeneous elastic-plastic deformations remains an issue. KW - Magnetic stray fields KW - Magnetomechanical effect KW - Damage KW - Topography KW - Multiaxial deformation KW - Notch KW - Plastic deformation KW - Metal magnetic memory KW - Digital image correlation KW - Structural steel PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-457878 SN - 1996-1944 VL - 11 IS - 9 SP - 1518, 1 EP - 26 PB - MDPI CY - Basel, Switzerland AN - OPUS4-45787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -