TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Einsatz von Messtechnik bei Großversuchen N2 - Vortrag über den Einsatz von Messtechnik bei Großversuchen auf dem BAM TTS im Rahmen des Projektes CoFi-ABV T2 - Öffentlicher Vortrag im Rahmen einer Lehrveranstaltung "Experimentelle Methoden der Aerodynamik" (Fachgebiet Aerodynamik, Institut für Luft- und Raumfahrt), TU Berlin CY - Berlin, Germany DA - 09.01.2018 KW - Alternative Antriebe KW - Alternative Kraftstoffe KW - Behälterversagen KW - Fahrzeugbrand KW - Messtechnik PY - 2018 AN - OPUS4-43703 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of failure of LPG gas tanks in passenger cars during full fire development N2 - In continuation of a preceding test series involving sole LPG vehicle tanks, three passenger cars equipped with identical toroidal steel LPG tanks were set on fire. The tanks were installed in the space normally reserved for the spare tyre, in the car boot. No safety device was installed on the tank, in order to force critical failure of the cylinder. Two of the cars were equipped with a tank filled with liquefied propane to a level of 20% (5.3 kg), the third one was filled completely (25.5 kg). The partially filled tanks failed critically within a time period of more than 20 min after the initiation of the fire. The fully-filled tank did not rupture; the propane was released continuously through a small leak that appeared during the fire. Comprehensive equipment was used to procure measurement data, enabling an analysis of potential consequences and hazards to humans and infrastructure within the vehicle surroundings. The inner status of the tank (pressure, temperature of the liquid phase and the steel casing), the development of the fire (temperature inside and around the vehicle) and the pressure induced in the near-field in case of tank rupture were recorded. The results were analysed in detail and compared against the data gained in tests involving sole, but identical LPG tanks. T2 - 5th International Conference on Fieres in Vehicles - FIVE 2018 CY - Boras, Sweden DA - 03.10.2018 KW - Behälterversagen KW - LPG KW - Alternative Antriebe KW - Fahrzeugbrand PY - 2018 AN - OPUS4-46245 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krentel, Daniel A1 - Tschirschwitz, Rico A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of failure of LPG gas tanks in passenger cars during full fire development N2 - In continuation of a preceding test series involving sole LPG vehicle tanks, three passenger cars equipped with identical toroidal steel LPG tanks were set on fire. The tanks were installed in the space normally reserved for the spare tyre, in the car boot. No safety device was installed on the tank, in order to force critical failure of the cylinder. Two of the cars were equipped with a tank filled with liquefied propane to a level of 20 % (5.3 kg), the third one was filled completely (25.5 kg). The partially filled tanks failed critically within a time period of more than 20 min after the initiation of the fire. The fully-filled tank did not rupture; the propane was released continuously through a small leak that appeared during the fire. Comprehensive equipment was used to procure measurement data, enabling an analysis of potential consequences and hazards to humans and infrastructure within the vehicle surroundings. The inner status of the tank (pressure, temperature of the liquid phase and the steel casing), the development of the fire (temperature inside and around the vehicle) and the pressure induced in the near-field in case of tank rupture were recorded. The results were analysed in detail and compared against the data gained in tests involving sole, but identical LPG tanks. T2 - FIVE 2018 CY - Boras, Sweden DA - 03.10.2018 KW - Behälterversagen KW - LPG KW - Alternative Antriebe KW - Fahrzeugbrand KW - Auswirkungsbetrachtung PY - 2018 SN - 978-91-88695-95-6 VL - 51 SP - 123 EP - 131 PB - RISE Safety CY - Boras AN - OPUS4-46310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Neumann, Patrick P. A1 - Hüllmann, Dino A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Kohlhoff, Harald A1 - Lilienthal, A. J. T1 - Gas Tomography Up In The Air! N2 - In this paper, we present an autonomous aerial robot to reconstruct tomographic 2D slices of gas plumes in outdoor environments. Our platform, the so-called Unmanned Aerial Vehicle for Remote Gas Sensing (UAV-REGAS) combines a lightweight Tunable Diode Laser Absorption Spectroscopy (TDLAS) sensor with a 3-axis aerial stabilization gimbal for aiming on a versatile octocopter. The TDLAS sensor provides integral gas concentration measurements but no information regarding the distance traveled by the laser diode's beam or the distribution of the gas along the optical path. We complemented the set-up with a laser rangefinder and apply principles of Computed Tomography (CT) to create a model of the spatial gas distribution from these integral concentration measurements. To allow for a rudimentary ground truth evaluation of the applied gas tomography algorithm, we set up a unique outdoor test environment based on two 3D ultrasonic anemometers and a distributed array of 10 infrared gas transmitters. We present first results showing the 2D plume reconstruction capabilities of the system under realistic conditions. T2 - IEEE Sensors 2018 CY - New Delhi, India DA - 28.10.2018 KW - Aerial robot KW - TDLAS KW - Gas tomography KW - Plume PY - 2018 SN - 978-1-5386-4707-3 SP - 396 EP - 398 PB - IEEE AN - OPUS4-46477 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Tschirschwitz, Rico A1 - Krentel, Daniel A1 - Kluge, Martin A1 - Askar, Enis A1 - Habib, Abdel Karim A1 - Kohlhoff, Harald A1 - Krüger, Simone A1 - Neumann, Patrick P. A1 - Rudolph, Michael A1 - Schoppa, André A1 - Storm, Sven-Uwe A1 - Szczepaniak, Mariusz T1 - Experimental investigation of consequences of LPG vehicle tank failure under fire conditions N2 - In case of a vehicle fire, an installed LPG (liquefied petroleum gas) tank with a malfunctioning safety device poses severe hazards. To investigate the consequences in case of tank failure, we conducted 16 tests with toroidal shaped LPG vehicle tanks. Three tanks were used for a Hydraulic Burst Test under standard conditions. Another three tanks were equipped with a statutory safety device and were subjected to a gasoline pool fire. The safety device prevented tank failure, as intended. To generate a statistically valid dataset on tank failure, ten tanks without safety devices were exposed to a gasoline pool fire. Five tanks were filled to a level of 20 %; the re-maining five were filled to a level of 100 %. In order to gain information on the heating process, three tem-perature readings at the tank surface, and three nearby flame temperatures were recorded. At distances of l = (7; 9; 11) m to the tank, the overpressure of the shock wave induced by the tank failure and the unsteady tem-peratures were measured. All ten tanks failed within a time of t < 5 min in a BLEVE (boiling liquid expanding vapor explosion). Seven of these resulted directly in a catastrophic failure. The other three resulted in partial failure followed by catastrophic failure. A near field overpressure at a distance of l = 7 m of up to p = 0.27 bar was measured. All ten tests showed massive fragmentation of the tank mantle. In total, 50 fragments were found. These 50 fragments make-up 88.6 % of the original tank mass. Each fragment was georeferenced and weighed. Fragment throwing distances of l > 250 m occurred. For the tanks with a fill level of 20 %, the average number of fragments was twice as high as it was for the tanks that were filled completely. KW - Blast wave KW - BLEVE KW - Consequences KW - Explosion KW - LPG PY - 2018 UR - https://authors.elsevier.com/a/1XnFv_Ld32ewKu U6 - https://doi.org/10.1016/j.jlp.2018.09.006 SN - 0950-4230 VL - 56 SP - 278 EP - 288 PB - Elsevier CY - Kidlington - Oxford AN - OPUS4-46238 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -