TY - JOUR A1 - Mishra, Kirti Bhushan A1 - Wehrstedt, Klaus-Dieter A1 - Krebs, Holger T1 - Amuay refinery disaster: The aftermaths and challenges ahead N2 - Amuay refinery disaster (2012) is another recent example of Vapor Cloud Explosion (VCE) and fire accidents preceded by Buncefield (2005), Puerto-Rico (2009) and Jaipur (2009), respectively [9]. The incident has left many safety issues behind which must be repeatedly addressed. Unfortunately, the lessons taught by previous similar events are just not understood carefully. It reveals that the proper safety measures for such facilities were either underestimated or were not accounted seriously. Consequently, the resulting overpressures from explosion and the subsequent thermal radiation from tank fires have once again proved to be disastrous to both mankind and infrastructure. This article highlights the aftermaths of Amuay incident and addresses the challenges put forward by it. Furthermore, a comparative study is performed between such incidents to analyze the similarities and how they could have been avoided. KW - Refinery disaster KW - Vapor cloud explosion KW - Fire KW - Safety distance KW - Overpressure KW - Radiation PY - 2014 DO - https://doi.org/10.1016/j.fuproc.2013.10.025 SN - 0016-2361 SN - 0378-3820 SN - 1873-7153 VL - 119 SP - 198 EP - 203 PB - Elsevier CY - Amsterdam AN - OPUS4-29816 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Mishra, K. B. A1 - Wehrstedt, Klaus-Dieter A1 - Krebs, Holger T1 - Prediction of overpressure in buried gas pipeline explosions N2 - The explosion and fire incidents with buried gas pipelines are increasing globally e.g. San Bruno (USA, 2010), East Godavari (India, 2014) and Ludwigshafen (Germany, 2014) are only a few to quote. There are a number of parameters involved behind the occurrence of these incidents such as human mistake, intended efforts leading to major or minor leak, explosion due to depressurization, crater formation, spill of gaseous fuel in the nearby regions and pool/jet/crater fires. In continuation to [3] these parameters are investigated for Ludwigshafen incident in the present work. The semi-empirical and advanced CFD (Computational Fluid Dynamics) based models are utilized to assess the damages caused by the explosion overpressures. Recommendations are also provided on minimum safety distance to be considered for such pipelines to avoid/foresee/mitigate similar hazards in future. T2 - 5. Brand- und Explosionsschutztage 2017 CY - Magdeburg, Germany DA - 23.03.2017 KW - Buried gas pipeline KW - Explosion KW - Overpressure KW - CFD-Model KW - Safety distance PY - 2017 SN - 978-3-00-056201-3 DO - https://doi.org/10.978.300/0562013 SP - 1 EP - 8 AN - OPUS4-40193 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krebs, Holger A1 - Wehrstedt, Klaus-Dieter A1 - Mishra, K. B. T1 - Prediction of overpressure in buried gas pipeline explosions N2 - The explosion and fire incidents with buried gas pipelines are increasing globally e.g. San Bruno (USA, 2010), East Godavari (India, 2014) and Ludwigshafen (Germany, 2014) are only a few to quote. There are a number of parameters involved behind the occurrence of these incidents such as human mistake, intended efforts leading to major or minor leak, ex-plosion due to depressurization, crater formation, spill of gaseous fuel in the nearby regions and pool/jet/crater fires. In continuation to [3] these parameters are investigated for Ludwigs-hafen incident in the present work. The semi-empirical and advanced CFD (Computational Fluid Dynamics) based models are utilized to assess the damages caused by the explosion overpressures. Recommendations are also provided on minimum safety distance to be consid-ered for such pipelines to avoid/foresee/mitigate similar hazards in future. T2 - 5. Magdeburger Brand- und Explosionsschutztage CY - Magdeburg, Germany DA - 23.03.2017 KW - Buried gas pipeline KW - Explosion KW - Overpressure KW - CFD model KW - Safety distance PY - 2017 AN - OPUS4-43071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -