TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - A dynamic fiber optic strain and power change sensor N2 - A dynamic and quasi-distributed sensor principle for simultaneous measurement of length changes and optical power changes between reflection points in an optical fiber is presented. The technique is based on the incoherent optical frequency domain reflectometry (I-OFDR). Length change resolutions < 1 µm and measurement repetition rates up to 2 kHz can be achieved using standard single-mode and multi-mode optical fibers. Simultaneous length change and refractive index measurement as well as field test results showing the deformation of a masonry building under seismic load are presented. Promising fields of application for this technique are the structural health monitoring sector and chemical process control. T2 - 21st International conference on optical fibre sensors CY - Ottawa, Canada DA - 15.05.2011 KW - Distributed sensor KW - Strain sensor KW - Optical fiber sensor KW - Structural health monitoring KW - OFDR KW - Dynamic sensor PY - 2011 SN - 978-0-8194-8246-4 U6 - https://doi.org/10.1117/12.884577 VL - 7753 SP - 775351-1 EP - 775351-4 AN - OPUS4-24266 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina ED - Santos, J.L. ED - Culshaw, B. ED - López-Higuera, J.M. ED - MacPherson, W.N. T1 - A novel fiber optic technique for quasi-distributed and dynamic measurement of length change and refractive index N2 - We present a novel technique for dynamic and simultaneous measurement of displacement and refractive indices at multiple reflection points in optical fibers. This quasi-distributed sensor is based on the incoherent optical frequency domain reflectometry (I-OFDR) technique and allows for m-resolution length change measurement and precise refractive index measurement. We show that the dynamic measurement ability and the simple sensor design allows for new applications in the field of structural health monitoring and chemical process control. T2 - 4th European workshop on optical fibre sensors CY - Porto, Portugal DA - 2010-09-08 KW - Quasi-distributed sensor KW - Strain sensor KW - Length change measurement KW - Optical fiber sensor KW - Refractive index sensor KW - Structural health monitoring KW - OFDR PY - 2010 SN - 978-0-8194-8083-5 U6 - https://doi.org/10.1117/12.866325 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 7653 SP - 76532V-1 - 76532V-4 PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-22380 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - A novel quasi-distributed fibre optic displacement sensor for dynamic measurement N2 - We present a novel technique based on incoherent optical frequency domain reflectometry (OFDR) to measure length changes quasi-distributed between reflection points in optical fibres. The technique enables length changes to be measured with a resolution better than 1 µm and allows for static and dynamic measurement capabilities up to 2 kHz. We demonstrate that dynamic measurements of multiple fibre sections can be conducted independently from each other with high precision. Due to the precise and dynamic measurement capabilities, the proposed sensor system is expected to open new fields of application, especially in the structural-health-monitoring sector. Possible applications are discussed in the paper. KW - Strain sensor KW - Optical frequency domain reflectometry KW - OFDR KW - Optical fibre KW - Fibre sensors KW - Quasi-distributed sensors KW - Dynamic strain measurement PY - 2010 UR - http://iopscience.iop.org/0957-0233/21/7/075205/pdf/0957-0233_21_7_075205.pdf U6 - https://doi.org/10.1088/0957-0233/21/7/075205 SN - 0957-0233 SN - 1361-6501 VL - 21 IS - 7 SP - 075205-1 - 075205-6 PB - IOP Publ. Ltd. CY - Bristol AN - OPUS4-21812 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina ED - De Roeck, G. ED - Degrande, G. ED - Lombaert, G. ED - Müller, G. T1 - A novel quasi-distributed long-gauge fiber optic strain sensor system for dynamic measurement N2 - We present a novel technique based on incoherent optical frequency domain reflectometry (OFDR) to measure length changes quasi-distributed between reflection points in optical fibres. The technique enables length changes to be measured with a resolution better than 1 µm and allows for static and dynamic measurement capabilities up to 2 kHz. We demonstrate that dynamic measurements of multiple fibre sections can be conducted independently from each other with high precision. Due to the precise and dynamic measurement capabilities, the proposed sensor system is expected to open new fields of application, especially in the structural-health-monitoring sector. Possible applications are discussed in the paper. T2 - EURODYN 2011 - 8th International conference on structural dynamics CY - Leuven, Belgium DA - 04.07.2011 KW - Distributed sensor KW - Strain sensor KW - Optical fiber sensor KW - Structural health monitoring KW - OFDR KW - Length change measurement KW - Dynamic sensor PY - 2011 SN - 978-90-760-1931-4 SP - 2097 EP - 2102 AN - OPUS4-24347 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - A novel technique for quasi-distributed and dynamic length change measurement in optical fibers N2 - We present a novel technique to measure length changes between multiple reflection points in optical fibers. The technique allows for dynamic measurement up to 1kHz and a resolution better than 1µm. T2 - International conference "Optical sensors" CY - Karlsruhe, Germany DA - 2010-06-21 PY - 2010 U6 - https://doi.org/10.1364/SENSORS.2010.STuB5 IS - STuB5 SP - 1 EP - 2 AN - OPUS4-21626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - Application of quasi-distributed and dynamic length and power change measurement using optical frequency domain reflectometry N2 - Application results of a dynamic technique for simultaneous measurement of length changes and optical power changes between multiple reflection points in an optical fiber are presented. The technique is based on incoherent optical frequency domain reflectometry (I-OFDR) and allows for measuring for example length changes and optical power changes quasi-distributed at repetition rates up to 2 kHz. Precise measurement with length change resolutions in the µm-range can be conducted using standard single-mode or multi-mode fibers. Previous results of dynamic refractive index change measurement and the use of polymer optical fibers for high-strain measurement are concluded and possible sources of measurement inaccuracies are discussed. Field test results with sensors installed on a masonry building during a seismic shake test are presented. The versatility and simplicity of this technique makes it potentially interesting for application in the structural health monitoring sector and chemical process control. KW - Distributed strain sensor KW - Dynamic measurement KW - Optical fiber sensor KW - Refractive index sensors KW - Structural health monitoring PY - 2012 U6 - https://doi.org/10.1109/JSEN.2011.2157126 SN - 1530-437X SN - 1558-1748 VL - 12 IS - 1 SP - 237 EP - 245 CY - New York, NY, USA AN - OPUS4-25565 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Liehr, Sascha A1 - Krebber, Katerina T1 - Applications and prospects for distributed sensing using polymer optical fibres N2 - One of the unique advantages of polymer optical fibres (POF) is that they can be used to measure very high strain values up to 100 % and beyond exceeding the strain limits of silica fibre-based sensor principles. In this paper the distributed strain measurement capabilities of POF based on backscatter change evaluation are summarized and distributed backscatter measurement technologies are intro-duced. Application examples in the structural health monitoring (SHM) field are presented: a promising approach is the integration into technical textiles for high-strain measurement in earthwork structures and crack detection in buildings. The potential of POF for future applications in SHM such as distributed relative humidity sensing is discussed. T2 - International Conference on Smart Infrastructure and Construction CY - Cambridge, UK DA - 27.06.2016 KW - Strain measurement KW - Structural health monitoring KW - OTDR KW - Polymer Optical Fibre KW - Distributed sensing PY - 2016 UR - http://www.icevirtuallibrary.com/doi/abs/10.1680/tfitsi.61279.093 SN - 978-0-7277-6127-9 U6 - https://doi.org/10.1680/tfi tsi.61279.093 SP - 93 EP - 98 PB - ICE Publishing CY - London, UK AN - OPUS4-37230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schreier, Andy A1 - Liehr, Sascha A1 - Wosniok, Aleksander A1 - Krebber, Katerina T1 - Comparison of solution approaches for distributed humidity sensing in perfuorinated graded-index polymer optical fibers N2 - We compare four different sensing solutions suitable for distributed fiber optic humidity sensing in per uorinated graded-index polymer optical fibers (PFGI-POFs). Compared to silica fbers, polymer optical fibers over advantageous beneffits including signifficantly higher break down strain, fracture toughness and humidity sensitivity. Various humidity-related effects in PFGI-POFs have been reported in the last years including measured attenuation and length changes as well as Brillouin frequency and Bragg wavelength shifts. The four aforementioned methods could serve as a basis for distributed and quasi-distributed humidity sensing and are described here closely with an emphasis on plausible cross effects to temperature and strain. The main focus of this paper lies on the comparison of four approaches with regard to method complexity, sensitivity to humidity, spatial resolution, real-time capability and effort to compensate for cross effects. T2 - SPIE Optics + Optoelectronics CY - Prague, Czech Republic DA - 01.04.2019 KW - Distributed sensing KW - Humidity KW - Polymer optical fibre PY - 2019 SN - 978-1-5106-2723-9 U6 - https://doi.org/10.1117/12.2522307 SN - 0277-786X SN - 1996-756X SP - 1102808-1 EP - 1102808-9 PB - SPIE AN - OPUS4-47844 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krebber, Katerina A1 - Lenke, Philipp A1 - Liehr, Sascha A1 - Nöther, Nils A1 - Wendt, Mario A1 - Wosniok, Aleksander ED - Santos, J.L. ED - Culshaw, B. ED - López-Higuera, J.M. ED - MacPherson, W.N. T1 - Distributed fiber optic sensors embedded in technical textiles for structural health monitoring N2 - Technical textiles with embedded distributed fiber optic sensors have been developed for the purposes of structural health monitoring in geotechnical and civil engineering. The distributed fiber optic sensors are based on Brillouin scattering in silica optical fibers and OTDR in polymer optical fibers. Such "smart" technical textiles can be used for reinforcement of geotechnical and masonry structures and the embedded fiber optic sensors can provide information about the condition of the structures and detect the presence of any damages and destructions in real time. Thus, structural health monitoring of critical geotechnical and civil infrastructures can be realized. The paper highlights the results achieved in this innovative field in the framework of several German and European projects. T2 - 4th European workshop on optical fibre sensors CY - Porto, Portugal DA - 2010-09-08 KW - Fiber optic sensor KW - Distributed sensor KW - Brillouin sensor KW - Polymer optical fibers (POF) KW - POF sensor KW - POF OTDR KW - Strain sensor KW - Technical textiles KW - Geotextiles PY - 2010 SN - 978-0-8194-8083-5 U6 - https://doi.org/10.1117/12.868052 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE IS - 7653 SP - 76530A-1 - 76530A-12 PB - SPIE, the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-21948 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krebber, Katerina A1 - Lenke, Peter A1 - Liehr, Sascha A1 - Nöther, Nils A1 - Wendt, Mario A1 - Wosniok, Aleksander A1 - Schneider-Gloetzl, J. A1 - Gloetzl, R. T1 - Distributed fibre optic sensors embedded in technical textiles for monitoring of geotechnical and masonry structures T2 - Monitoring technologies workshop - MoDeRn (Proceedings) CY - Troyes, France DA - 2010-06-07 PY - 2010 IS - OP.7 SP - 71 EP - 72 AN - OPUS4-23041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -