TY - JOUR A1 - Schlick-Hasper, Eva A1 - Goedecke, Thomas A1 - Kraume, M. T1 - Leakproofness of dangerous goods packagings - comparison of worst-case limit leakage rates and sensitivity of the bubble test N2 - This work focuses on the question if the bubble test prescribed in the Dangerous Goods Regulations has sufficient sensitivity to detect leakage rates, which could result in the formation of explosive atmospheres during transport. The sensitivity of the bubble test is not directly comparable with other leak testing methods because of its different flow conditions. Therefore, a normalized minimum detectable leakage rate under Helium test conditions is calculated for the bubble test. This sensitivity of the bubble test under reference conditions is compared with limit leakage rates for a worst‐case transport scenario. The sensitivity of the bubble test is not sufficient to prove the limit leakage rates for 6‐L packagings. The formation of explosive vapour‐air‐mixtures cannot be excluded. Therefore, more sensitive leak testing methods should be considered for smaller packaging design types. KW - Bubble test KW - Dangerous goods packagings KW - Explosive atmosphere KW - Leakproofness KW - Limit leakage rates PY - 2019 U6 - https://doi.org/10.1002/pts.2435 VL - 32 IS - 6 SP - 279 EP - 285 PB - Wiley AN - OPUS4-47998 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bornemann-Pfeiffer, Martin A1 - Kern, Simon A1 - Jurtz, N. A1 - Thiede, Tobias A1 - Kraume, M. A1 - Maiwald, Michael T1 - Design and validation of an additively manufactured flowCell–static mixer combination for inline NMR spectroscopy N2 - There have been an increasing number of publications on flow chemistry applications of compact NMR. Despite this, there is so far no comprehensive workflow for the technical design of flow cells. Here, we present an approach that is suitable for the design of an NMR flow cell with an integrated static mixing unit. This design moves the mixing of reactants to the active NMR detection region within the NMR instrument, presenting a feature that analyses chemical reactions faster (5–120 s region) than other common setups. During the design phase, the targeted mixing homogeneity of the components was evaluated for different types of mixing units based on CFD simulation. Subsequently, the flow cell was additively manufactured from ceramic material and metal tubing. Within the targeted working mass flow range, excellent mixing properties as well as narrow line widths were confirmed in validation experiments, comparable to common glass tubes. KW - Inline NMR Spectroscopy KW - Integrated Processes KW - Reaction Monitoring KW - Process Analytical Technology KW - Flow Chemistry KW - Static Mixing KW - Modular Production PY - 2019 UR - https://pubs.acs.org/doi/abs/10.1021/acs.iecr.9b03746 U6 - https://doi.org/10.1021/acs.iecr.9b03746 SN - 0888-5885 SN - 1520-5045 N1 - Geburtsname von Bornemann-Pfeiffer, Martin: Bornemann, M. - Birth name of Bornemann-Pfeiffer, Martin: Bornemann, M. VL - 58 IS - 42 SP - 19562 EP - 19570 PB - American Chemical Society CY - Washington AN - OPUS4-49041 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -