TY - JOUR A1 - Pfennig, A. A1 - Zastrow, Philip A1 - Kranzmann, Axel T1 - Influence of heat treatment on the corrosion behaviour of stainless steels during CO2-sequestration into saline aquifer N2 - The appropriate strength of steels used for saline aquifer carbon capture and storage sites (CCS) is usually achieved by applying heat treatments. Thus, heat treatment influences the corrosion resistance for injection pipe steels with 13% chromium and different carbon content: 1.4034/X46Cr13 and 1.4021/X20Cr13 in CO2 saturated saline aquifer water at 60 °C, 1 and 100 bar. X46Cr13 shows better corrosion resistance with respect to corrosion rate, number of pits and maximum intrusion depth. Low corrosion rates are obtained for steels with martensitic microstructures exposed to supercritical CO2 at 100 bar, whereas normalized steels show better corrosion resistance at ambient pressure. KW - Steel KW - Heat treatment KW - CO2 injection KW - Carbon capture and storage (CCS) KW - Corrosion PY - 2013 U6 - https://doi.org/10.1016/j.ijggc.2013.02.016 SN - 1750-5836 VL - 15 SP - 213 EP - 224 PB - Elsevier Ltd. CY - New York, NY [u.a.] AN - OPUS4-27994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pfennig, A. A1 - Kranzmann, Axel T1 - Effect of CO2 and pressure on the stability of steels with different amounts of chromium in saline water N2 - CO2-induced corrosion of casing and tubing steels is a relevant safety issue for compressing emission gasses into deep geological layers (CCS, Carbon Capture and Storage). The influence of CO2 and pressure of the surrounding media on steels is demonstrated in laboratory experiments providing a corrosive environment similar to a geological onshore CCS-site in the Northern German Basin (T = 60 °C, p = 1 - 100 bar, Stuttgart Aquifer, CO2-flow rate of 3 l/h, 700–8000 h exposure time). Corrosion kinetics and microstructures were characterized using specimens of heat treated 42CrMo4 (1.7225, casing) and soft annealed X46Cr13 (1.4034, tubing). KW - A. Low alloyed steel KW - A. Stainless steel KW - C. Pitting corrosion KW - C. Kinetic parameters KW - B. SEM PY - 2012 U6 - https://doi.org/10.1016/j.corsci.2012.08.041 SN - 0010-938X VL - 65 SP - 441 EP - 452 PB - Elsevier CY - Orlando, Fla. AN - OPUS4-27995 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhl, Aki Sebastian A1 - Kranzmann, Axel T1 - Corrosion in supercritical CO2 by diffusion of flue gas acids and water N2 - Carbon capture and storage (CCS) includes processing of supercritical carbon dioxide (scCO2). The carbon dioxide (CO2) stemming from flue gases contains acid forming impurities, especially in the case of coal fired power plants. In the present work, the mobility and reactivity of acids in supercritical scCO2 was investigated. The corrosive attack of low alloyed carbon steel (material 1.0484) by water (H2O) alone in scCO2 was negligible. Nitric acid (HNO3) was very mobile and corrosive towards the carbon steel while sulfuric acid did not migrate through the scCO2 to react with the steel surface. Hydrochloric acid in scCO2 was very mobile and reactive towards both carbon steel and high alloyed test equipment. Gravimetric analyses revealed a severe material loss after corrosion in the presence of HNO3. Thickness measurements showed localized material losses. KW - Supercritical CO2 KW - Corrosion KW - Carbon steel KW - Carbon capture and storage KW - CCS KW - Flue gas acids PY - 2012 U6 - https://doi.org/10.1016/j.supflu.2012.04.015 SN - 0896-8446 VL - 68 SP - 81 EP - 86 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-28054 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhl, Aki Sebastian A1 - Göbel, Artur A1 - Kranzmann, Axel T1 - Corrosion behavior of various steels for compression, transport and injection for carbon capture and storage N2 - Steels used within the process chain of carbon capture and storage (CCS) are exposed to conditions that are currently not fully tested. In the present work a number of steels were selected as possible construction materials: Alloyed steels for application in the compression and injection sections and low alloyed carbon steels for use as pipelines. Exposure tests were conducted over 600 hours at ambient pressure in a continuous flow of a simulated gas stream consisting of carbon dioxide with low contents of the relevant flue gas components nitrogen dioxide, sulfur dioxide, carbon monoxide, oxygen and water. Temperatures were adjusted to 5, 60 and 170 centigrade. KW - CCS KW - Material selection KW - Gas corrosion KW - Dew point corrosion KW - Compression KW - Pipeline KW - Injection PY - 2012 U6 - https://doi.org/10.1016/j.egypro.2012.06.074 SN - 1876-6102 VL - 23 SP - 216 EP - 225 PB - Elsevier CY - Amsterdam AN - OPUS4-27913 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Schulz, S. A1 - Werlitz, T. A1 - Bülow, E. A1 - Wetzlich, S. A1 - Tietböhl, J. A1 - Frieslich, C. A1 - Kranzmann, Axel T1 - Influence of heat treatment on the corrosion of steels in CCS environment T2 - TMS 2012 - 141st Annual Meeting & Exhibition CY - Orlando, FL, USA DA - 2012-03-11 KW - CCS KW - Carbon capture and storage KW - Corrosion KW - Steel KW - Pipeline KW - Carbon KW - Heat treatment KW - CO2-storage PY - 2012 SN - 978-1-11829-607-3 VL - 1 IS - Supplemental Proceedings SP - 103 EP - 110 PB - John Wiley & Sons CY - Hoboken, NJ, USA AN - OPUS4-28007 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Linke, B. A1 - Schulze, S. A1 - Kranzmann, Axel T1 - Corrosion in pipe steels exposed to supercritical CO2 during carbon capture and storage CCS N2 - The CCS technique involves the compression of emission gasses in deep geological layers. To guarantee the safety of the site, CO2-corrosion of the injection pipe steels has to be given special attention when engineering CCS-sites. To get to know the corrosion behaviour samples of the heat treated steel 1.72252CrMo4, used for casing, and the stainless injection-pipe steel 1.4034 X46Cr13 were kept at T=60 °C and ambient pressure as well as p=100 bar for 700 h - 8000 h in a CC 2-saturated synthetic aquifer environment similar to possible geological on-shore CCS-sites in the northern German Basin. The isothermal corrosion behaviour obtained by mass gain of the steels in the gas phase, the liquid phase and the intermediate phase gives surface corrosion rates around 0.1 to 0.8 mm/year at ambient pressure and much lower about 0.02 to 0.2 mm/year at 100 bar where the CO 2 is in its supercritical state. Severe pit corrosion with pit heights around 4.5 mm are only located on the 42CrMo4 steel. Main phase of the continuous complicated multi-layered carbonate/oxide structure is siderite FeCO 3 in both types of steel. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011 KW - Steel KW - Pipeline KW - Corrosion KW - Carbonate layer KW - CCS KW - CO2-storage PY - 2011 SP - Paper 1044-1 EP - Paper 1044-8 AN - OPUS4-28008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pfennig, Anja A1 - Linke, B. A1 - Schulze, S. A1 - Kranzmann, Axel T1 - Static and dynamic long term corrosion experiments in CCS-conditions N2 - Dealing with first corrosion screening experiments to predict the reliability and safety of Germanys first Carbon Capture and Storage site in the northern Bassin of Germany, northwest of the Capital Berlin, laboratory experiments have been established to simulate the particular conditions at T=60 °C, highly saline aquifer water similar to 'Stuttgart Aquifer', but only at ambient pressure. With mounting 2 independent full 2-grade titanium autoclave systems (running up to 250 bar and 300 °C) pressures up to p=100 bar are possible. In 2010 a specific corrosion chamber of 2-grade titanium working up to 100 °C, flowing aqui fer water with different gas mixtures was designed to fit to a high cycle fatigue testing machine. Long term fatigue experiments simulating fatigue crack growth under corrosive environments will soon start. These experiments may not only help engineering a CCS site, but results can be used to improve the maintenance of geothermal energy production sites, especially moved parts such as pumps and shafts. T2 - EUROCORR 2011 - Developing solutions for the global challenge CY - Stockholm, Sweden DA - 04.09.2011 KW - CO2 KW - Static corrosion KW - High cycle fatigue KW - Steel KW - CCS KW - CO2-storage KW - Corrosion PY - 2011 SP - 1 EP - 7 (Paper 1087) AN - OPUS4-28009 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Ruhl, Aki Sebastian A1 - Göbel, Artur A1 - Kühn, Hans-Joachim A1 - Kranzmann, Axel T1 - Materials testing under mechanical stress, pressure and turbulent flow of impure supercritical CO2 N2 - The climate change necessitates measures to reduce carbon dioxide (CO2) emissions in the atmosphere, one of which is carbon dioxide capture and storage (CCS). Transmission of pressurized liquid or supercritical CO2 containing residual flue gas constituents in pipelines is an important component of CCS systems. Material testing under conditions as close as possible to real conditions is a prerequisite for reliable and safe implementation of CCS. A novel pipeline corrosion test facility was developed, accounting for major mechanical, physical and chemical influencing factors: elastic deformation, pressure, temperature, gas composition and flow velocity can be independently adjusted. Radial and tangential stress distributions on a round sample were experimentally investigated, indicating a good accordance with expected theoretical values. In this contribution the idea of the novel corrosion test facility and the assembled equipment as well as first results are presented and discussed.----------------------------------------------------------------------------------------------------Die Klimaveränderung macht Maßnahmen zur Reduktion von Kohlendioxidemission (CO2) in die Atmosphäre erforderlich, Rückhalt und Speicherung in tiefen geologischen Formationen (carbon capture and storage (CCS)) stellt eine davon dar. Der Transport von verflüssigtem oder superkritischem CO2 mit Verunreinigungen in Pipelines stellt einen wichtigen Teil von CCS-Systemen dar. Die Materialprüfung unter möglichst realitätsnahen Bedingungen ist eine wichtige Voraussetzung für die Einrichtung zuverlässiger und sicherer CCS-Systeme. Hierzu wurde eine neue Versuchseinrichtung zur Korrosionsprüfung von Pipelinewerkstoffen entwickelt, die folgende wesentliche physikalische und chemische Einflussgrößen berücksichtigt: Elastische Verformung, Druck, Temperatur, Gaszusammensetzung, und Fließgeschwindigkeit können unabhängig voneinander eingestellt werden. Die Verteilung der Radial- und Tangentialspannungen wurden in einer Rundprobe untersucht, und die Ergebnisse zeigten gute Übereinstimmungen mit den theoretisch zu erwartenden Werten. In dem vorliegenden Beitrag werden die Idee zu der neuen Korrosionsprüfeinrichtung und erste Ergebnisse vorgestellt sowie diskutiert. PY - 2013 U6 - https://doi.org/10.3139/120.110428 SN - 0025-5300 VL - 55 IS - 3 SP - 158 EP - 162 PB - Hanser CY - München AN - OPUS4-28283 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kranzmann, Axel A1 - Neddemeyer, Torsten A1 - Ruhl, Aki Sebastian A1 - Hünert, Daniela A1 - Bettge, Dirk A1 - Oder, Gabriele A1 - Saliwan Neumann, Romeo T1 - The challenge in understanding the corrosion mechanisms under oxyfuel combustion conditions N2 - Basic research on the corrosive effect of flue gases has been performed at the BAM Federal Institute for Materials Research and Testing (Germany). Conditions at both high and low temperatures were simulated in specially designed experiments. Carburization occured in flue gases with high CO2 content and temperatures higher than 500 °C. In SO2 containing flue gases sulphur was detected in the oxide scale. At lower temperatures no corrosion was observed when gases with low humidity were investigated. Humidity higher than 1500 ppm was corrosive and all steels with Cr contents lower than 12% revealed corroded surfaces. At low temperatures below 10 °C a mixture of sulphuric and nitric acid condensed on metal surfaces. Acid condensation caused severe corrosion. Humidity, CO2, O2, and SO2 contents are the important factors determining corrosion. Below 300 °C acid condensation is the primary reason for corrosion. Low humidity and low temperatures are conditions which can be expected in the CO2 separation and treatment process. This work includes major conditions of the flue gas and CO2 stream in CCS plants and CCS technology. KW - Coal KW - Oxyfuel power plant KW - Corrosion KW - Carburization KW - Sulphur KW - Sulphuric acid PY - 2011 U6 - https://doi.org/10.1016/j.ijggc.2011.05.029 SN - 1750-5836 VL - 5 IS - Supplement 1 SP - S168 EP - S178 PB - Elsevier CY - New York, NY [u.a.] AN - OPUS4-24705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulz, Wencke A1 - Nofz, Marianne A1 - Feigl, Michael A1 - Dörfel, Ilona A1 - Saliwan Neumann, Romeo A1 - Kranzmann, Axel T1 - Corrosion of uncoated and alumina coated steel X20CrMoV12-1 in H2O-CO2-O2 and air at 600 °C N2 - Future coal power plants will in case of oxyfuel combustion be operated with altered atmospheres. Hence, corrosion attack might become more severe and steels have to be protected. An alumina-sol was used to coat X20CrMoV12-1 (X20) with alumina to test the protection. Testing was performed at 600 °C in flowing H2O–CO2–O2 and static laboratory air for 1000 h. Oxidation under air is minor compared to exposure in oxyfuel atmosphere. In both cases a multilayered oxide (hematite, magnetite, spinel) was formed on uncoated steels. Carburization appeared on uncoated X20 in H2O–CO2–O2. The coating demonstrates a high protection. KW - A. Steel KW - B. SEM KW - B. STEM KW - C. Carburization KW - C. High temperature corrosion KW - C. Oxide coatings PY - 2013 U6 - https://doi.org/10.1016/j.corsci.2012.10.031 SN - 0010-938X VL - 68 SP - 44 EP - 50 PB - Elsevier Ltd. CY - Orlando, Fla. AN - OPUS4-27636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -