TY - CONF A1 - Kraehnert, R. A1 - Polte, Jörg A1 - Erler, Robert A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Ahner, T. T. A1 - Sokolov, S. A1 - Ortel, Erik T1 - Size-controlled synthesis of gold-nanoparticles for catalytic applications followed by in-situ SAXS, XANES and UV/Vis T2 - Deutsche Tagung für Forschung mit Synchrotronstrahlung, Neutronen und Ionenstrahlen an Großgeräten CY - Berlin, Germany DA - 2010-02-24 PY - 2010 AN - OPUS4-20176 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Herder, Martin A1 - Erler, Robert A1 - Rolf, Simone A1 - Fischer, A. A1 - Würth, Christian A1 - Thünemann, Andreas A1 - Kraehnert, R. A1 - Emmerling, Franziska T1 - Mechanistic insights into seeded growth processes of gold nanoparticles N2 - A facile approach for the synthesis of monodisperse gold nanoparticles with radii in the range of 7 to 20 nm is presented. Starting from monodisperse seeds with radii of 7 nm, produced in the first step, the addition of a defined amount of additional precursor material permits distinct size regulation and the realization of predicted nanoparticle sizes. These information were derived from ex- and in situ investigations by comprehensive small angle X-ray scattering (SAXS), X-ray absorption near edge structure (XANES) and UV-Vis data to obtain information on the physicochemical mechanisms. The obtained mechanisms can be transferred to other seeded growth processes. Compared to similar approaches, the presented synthesis route circumvents the use of different reducing or stabilizing agents. The size of resulting nanoparticles can be varied over a large size range presented for the first time without a measurable change in the shape, polydispersity or surface chemistry. Thus, the resulting nanoparticles are ideal candidates for size dependence investigations. KW - Gold nanoparticles KW - SAXS KW - XANES KW - Growth mechanism PY - 2010 U6 - https://doi.org/10.1039/c0nr00541j SN - 2040-3364 SN - 2040-3372 VL - 2 IS - 11 SP - 2463 EP - 2469 PB - RSC Publ. CY - Cambridge AN - OPUS4-22346 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Erler, Robert A1 - Thünemann, Andreas A1 - Sokolov, S. A1 - Ahner, T. T. A1 - Rademann, K. A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - Nucleation and growth of gold nanoparticles studies via in situ small angle X-ray scattering at millisecond time resolution N2 - Gold nanoparticles (AuNP) were prepared by the homogeneous mixing of continuous flows of an aqueous tetrachloroauric acid solution and a sodium borohydride solution applying a microstructured static mixer. The online characterization and screening of this fast process (~2 s) was enabled by coupling a micromixer operating in continuous-flow mode with a conventional in-house small angle X-ray scattering (SAXS) setup. This online characterization technique enables the time-resolved investigation of the growth process of the nanoparticles from an average radius of ca. 0.8 nm to about 2 nm. To the best of our knowledge, this is the first demonstration of a continuous-flow SAXS setup for time-resolved studies of nanoparticle formation mechanisms that does not require the use of synchrotron facilities. In combination with X-ray absorption near edge structure microscopy, scanning electron microscopy, and UV-vis spectroscopy the obtained data allow the deduction of a two-step mechanism of gold nanoparticle formation. The first step is a rapid conversion of the ionic gold precursor into metallic gold nuclei, followed by particle growth via coalescence of smaller entities. Consequently it could be shown that the studied synthesis serves as a model system for growth driven only by coalescence processes. KW - Nanoparticle formation mechanism KW - SAXS KW - Microstructured static mixer KW - Continuous flow PY - 2010 U6 - https://doi.org/10.1021/nn901499c SN - 1936-0851 VL - 4 IS - 2 SP - 1076 EP - 1082 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-20940 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Kraehnert, R. A1 - Radtke, Martin A1 - Reinholz, Uwe A1 - Riesemeier, Heinrich A1 - Thünemann, Andreas A1 - Emmerling, Franziska T1 - New insights of the nucleation and growth process of gold nanoparticles via in situ coupling of SAXS and XANES N2 - Although metallic nanoparticles play an important role in the area of nanotechnology, a coherent mechanistic explanation for the evolution of the particles during their chemical synthesis has not yet been provided in many cases. To gain a profound understanding of the growth mechanism of colloidal nanoparticles, new approaches using Small Angle X-Ray Scattering (SAXS) combined with X-ray absorption near-edge structure (XANES) are presented. This combination allows for insights into two prominent syntheses routes of gold nanoparticles (GNP): The 'slow' reaction using sodium citrate (30-90 min) as a reducing agent and the 'fast' reaction employing NaBH4 (within few seconds). In the first case data derived with the coupled XANES and SAXS suggests a four-step particle formation mechanism. For the second system a time resolution in the order of 100-200 ms was achieved by coupling a common laboratory SAXS instrument with a microstructured mixer, which allows data acquisition in a continuous-flow mode. The results indicate a coalescence driven growth process. Based on the capabilities to deduce the size, number and polydispersity of the particles, the results of both methods enable the development of mechanistic schemes explaining the different phases of particle formation and growth, thus providing a basis for improved control over the synthesis processes. KW - SAXS KW - XANES KW - Nanoparticle formation PY - 2010 U6 - https://doi.org/10.1088/1742-6596/247/1/012051 SN - 1742-6588 SN - 1742-6596 VL - 247 IS - 1 SP - 012051-1 - 012051-10 PB - IOP Publ. CY - Bristol, UK AN - OPUS4-22684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Ahner, T. T. A1 - Delißen, Friedmar A1 - Sokolov, S. A1 - Emmerling, Franziska A1 - Thünemann, Andreas A1 - Kraehnert, R. T1 - Mechanism of gold nanoparticle formation in the classical citrate synthesis method derived from coupled in situ XANES and SAXS evaluation PY - 2010 U6 - https://doi.org/10.1021/ja906506j SN - 0002-7863 SN - 1520-5126 VL - 132 IS - 4 SP - 1296 EP - 1301 PB - American Chemical Society CY - Washington, DC AN - OPUS4-23048 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Polte, Jörg A1 - Erler, Robert A1 - Thünemann, Andreas A1 - Emmerling, Franziska A1 - Kraehnert, R. T1 - SAXS in combination with a free liquid jet for improved time-resolved in situ studies of the nucleation and growth of nanoparticles PY - 2010 U6 - https://doi.org/10.1039/c0cc03238g SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x VL - 46 IS - 48 SP - 9209 EP - 9211 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-23049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -