TY - JOUR A1 - Häßler, Mai A1 - Häßler, Dustin A1 - Hothan, Sascha A1 - Krüger, Simone T1 - Fire tests of steel tension rod systems with intumescent coating N2 - Purpose – The purpose of this paper is to investigate the performance of intumescent coating on tension rod systems and their components. Steel tension rod systems consist of tension rods, fork end connectors and associated intersection or gusset plates. In case of fire, beside the tension rods themselves, the connection parts require appropriate fire protection. Intumescent fire protection coatings prevent a rapid heating of the steel and help secure the structural load-carrying capacity. Because the connection components of tension rod systems feature surface curvature and a complex geometry, high demand is placed on the intumescence and thermal protection performance of the coatings. Design/methodology/approach – In this paper, experimental studies were carried out for steel tension rod systems with intumescent coating. The examined aspects include the foaming and cracking behaviour, the influence of different dry film thicknesses, the heating rate of the steel connecting parts in comparison to the tension rods, and the mounting orientation of the tension rods together with their fork end connectors. Findings – The results show that a decrease in surface curvature and/or an increase inmass concentration of the steel components leads to a lower heating rate of the steel. Moreover, the performance of the intumescent coating on tension rod systems is influenced by themounting orientation of the steel components. Originality/value – The findings based on fire tests contribute to a better understanding of the intumescent coating performance on connection components of tension rod systems. This subject has not been extensively studied yet. KW - Steel KW - Fire test KW - Intumescent coating KW - Reactive fire protection system KW - Tension rod system PY - 2019 U6 - https://doi.org/10.1108/JSFE-01-2019-0005 SN - 2040-2317 VL - 11 IS - 1 SP - 22 EP - 32 PB - Emerald Publishing Limited AN - OPUS4-48714 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -