TY - JOUR A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Femtosecond diffraction dynamics of laser-induced periodic surface structures on fused silica N2 - The formation of laser-induced periodic surface structures (LIPSS) on fused silica upon irradiation with linearly polarized fs-laser pulses (50 fs pulse duration, 800?nm center wavelength) is studied experimentally using a transillumination femtosecond time-resolved (0.1 ps-1 ns) pump-probe diffraction approach. This allows to reveal the generation dynamics of near-wavelength-sized LIPSS showing a transient diffraction at specific spatial frequencies even before a corresponding permanent surface relief was observed. The results confirm that the ultrafast energy deposition to the materials surface plays a key role and triggers subsequent physical mechanisms such as carrier scattering into self-trapped excitons. KW - High-speed optical techniques KW - Laser beam effects KW - Silicon compounds KW - Surface structure PY - 2013 DO - https://doi.org/10.1063/1.4790284 SN - 0003-6951 SN - 1077-3118 VL - 102 IS - 5 SP - 054102-1 EP - 054102-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-27646 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Jurke, Mathias A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - Influence of mechanical stress on nanosecond laser-induced damage threshold of fused silica N2 - Optical multimode fibers made of fused silica are widely used for transmission of high power laser pulses. Bending of fibers creates mechanical stress inside the material. The bend stress of a fiber can be calculated from bend radius, geometrical fiber parameters and Young's Modulus of the fiber core material and reaches typically values of 220 MPa. A thermo-elastic model of Kusov et al. predicts a quadratic dependence of laser-induced damage threshold fluence with applied stress. In the present study, fiber preform material F300 (Heraeus) was loaded mechanically with pressures up to 220 MPa representing 20% of the pressure resistance of fused silica. Bulk laser-induced damage thresholds (LIDT) were evaluated using a longitudinal multimode Q-switched Nd:YAG laser (1064 nm) at a pulse duration of 12 ns with polarization states parallel and perpendicular to the stress direction. LIDT of fused silica samples of about 700 J/cm2 were found. LIDT did not show a dependence on mechanical pressure and polarization state which is a consequence of the small ratio of maximum applied stress (220 MPa) to Young's Modulus of fused silica (72.5 GPa). KW - Laser-induced damage threshold KW - LIDT KW - Nanosecond laser KW - Fused silica KW - Mechanical stress KW - Optical fiber PY - 2012 DO - https://doi.org/10.1016/j.apsusc.2012.01.049 SN - 0169-4332 SN - 1873-5584 VL - 258 IS - 23 SP - 9153 EP - 9156 PB - North-Holland CY - Amsterdam AN - OPUS4-26225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rosenfeld, A. A1 - Rohloff, M. A1 - Höhm, S. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Formation of laser-induced periodic surface structures on fused silica upon multiple parallel polarized double-femtosecond-laser-pulse irradiation sequences N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences of parallel polarized Ti:sapphire femtosecond laser pulse pairs (160 fs pulse duration, 800 nm central wavelength) was studied experimentally. For that purpose, a Michelson interferometer was used to generate near-equal-energy double-pulse sequences allowing the temporal pulse delay between the parallel-polarized individual fs-laser pulses to be varied between 0 and 40 ps with ~0.2 ps temporal resolution. The surface morphologies of the irradiated surface areas were characterized by means of scanning electron and scanning force microscopy. In the sub-ps delay range a strong decrease of the LIPSS periods and the ablation crater depths with the double-pulse delay was observed indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS. KW - Laser-induced periodic surface structures (LIPSS) KW - Femtosecond laser ablation KW - Double-pulse experiments KW - Fused silica KW - Michelson interferometer PY - 2012 DO - https://doi.org/10.1016/j.apsusc.2011.09.076 SN - 0169-4332 SN - 1873-5584 VL - 258 IS - 23 SP - 9233 EP - 9236 PB - North-Holland CY - Amsterdam AN - OPUS4-26226 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Höhm, S. A1 - Rohloff, M. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Dynamics of the formation of laser-induced periodic surface structures on dielectrics and semiconductors upon femtosecond laser pulse irradiation sequences N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica and silicon with multiple (NDPS) irradiation sequences consisting of linearly polarized femtosecond laser pulse pairs (pulse duration ~150 fs, central wavelength ~800 nm) is studied experimentally. Nearly equal-energy double-pulse sequences are generated allowing the temporal pulse delay Δt between the cross-polarized individual fs-laser pulses to be varied from -40 ps to +40 ps with a resolution of ~0.2 ps. The surface morphologies of the irradiated surface areas are characterized by means of scanning electron and scanning force microscopy. Particularly for dielectrics in the sub-ps delay range striking differences in the orientation and spatial characteristics of the LIPSS can be observed. For fused silica, a significant decrease of the LIPSS spatial periods from ~790 nm towards ~550 nm is demonstrated for delay changes of less than ~2 ps. In contrast, for silicon under similar irradiation conditions, the LIPSS periods remain constant (~760 nm) for delays up to 40 ps. The results prove the impact of laser-induced electrons in the conduction band of the solid and associated transient changes of the optical properties on fs-LIPSS formation. PY - 2013 DO - https://doi.org/10.1007/s00339-012-7184-z SN - 0947-8396 VL - 110 IS - 3 SP - 553 EP - 557 PB - Springer CY - Berlin AN - OPUS4-27787 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Höhm, S. A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Sub-100-nm laser-induced periodic surface structures upon irradiation of titanium by Ti:sapphire femtosecond laser pulses in air N2 - The formation of laser-induced periodic surface structures (LIPSS) on titanium upon irradiation with linearly polarized femtosecond (fs) laser pulses (τ = 30 fs, λ = 790 nm) in an air environment is studied experimentally and theoretically. In the experiments, the dependence on the laser fluence and the number of laser pulses per irradiation spot has been analyzed. For a moderate number of laser pulses (N < 1000) and at fluences between ~0.09 and ~0.35 J/cm², predominantly low-spatial-frequency-LIPSS with periods between 400 nm and 800 nm are observed perpendicular to the polarization. In a narrow fluence range between 0.05 and 0.09 J/cm², high-spatial-frequency-LIPSS with sub-100-nm spatial periods (~λ/10) can be generated with an orientation parallel to the polarization (N = 50). These experimental results are complemented by calculations based on a theoretical LIPSS model and compared to the present literature. PY - 2013 DO - https://doi.org/10.1007/s00339-012-7140-y SN - 0947-8396 VL - 110 IS - 3 SP - 547 EP - 551 PB - Springer CY - Berlin AN - OPUS4-27788 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Meja, P. A1 - Autric, M. A1 - Kautek, Wolfgang T1 - Femtosecond pulse laser ablation of anodic oxide coatings on aluminium alloys with on-line acoustic observation N2 - The 125-fs laser ablation behaviour (800 nm) of aluminium and anodic oxide coatings on an AlMgSi1 alloy was investigated. The multi-pulse ablation threshold of aluminium at 1.2 J cm-2 was less than that of the oxides of 2–3 J cm-2. Aluminium exhibited a single pulse modification (melting) threshold of 0.3 J cm-2. These values derived from an evaluation of the crater geometry coincided with on-line acoustic measurements. The detected microphone voltage amplitude increased linearly with the laser fluence. The morphology of the ablation craters on aluminium indicated melt formation and displacement of a homogeneous melt phase due to the recoil action of the expanding metal vapour. The laser-processed ceramic oxide phases, on the other hand, showed a spongy resolidified melt layer, which denotes a collocated in-depth formation both of a melt and a gas phase. These phenomena are discussed in terms of the relative dominance of penetration depth of laser light and heat affected zones in the investigated materials with strongly varying optical and thermodynamical properties. KW - Laser ablation KW - Acoustic measurement KW - Microphone KW - Aluminium KW - Aluminium oxide PY - 2002 SN - 0169-4332 SN - 1873-5584 VL - 186 IS - 1-4 SP - 374 EP - 380 PB - North-Holland CY - Amsterdam AN - OPUS4-6324 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, Matthias T1 - Femtosecond laser ablation of silicon-modification thresholds and morphology N2 - We investigated the initial modification and ablation of crystalline silicon with single and multiple Ti:sapphire laser pulses of 5 to 400 fs duration. In accordance with earlier established models, we found the phenomena amorphization, melting, re-crystallization, nucleated vaporization, and ablation to occur with increasing laser fluence down to the shortest pulse durations. We noticed new morphological features (bubbles) as well as familiar ones (ripples, columns). A nearly constant ablation threshold fluence on the order of 0.2 J/cm2 for all pulse durations and multiple-pulse irradiation was observed. For a duration of ,100 fs, significant incubation can be observed, whereas for 5 fs pulses, the ablation threshold does not depend on the pulse number within the experimental error. For micromachining of silicon, a pulse duration of less than 500 fs is not advantageous. PY - 2002 DO - https://doi.org/10.1007/s003390100893 SN - 0947-8396 VL - 74 IS - 1 SP - 19 EP - 25 PB - Springer CY - Berlin AN - OPUS4-6328 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Jeschke, H.O. A1 - Garcia, M.E. A1 - Lenzner, Matthias A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Laser ablation thresholds of silicon for different pulse durations: theory and experiment N2 - The ultrafast laser ablation of silicon has been investigated experimentally and theoretically. The theoretical description is based on molecular dynamics (MD) simulations combined with a microscopic electronic model. We determine the thresholds of melting and ablation for two different pulse durations =20 and 500 fs. Experiments have been performed using 100 Ti:Sap-phire laser pulses per spot in air environment. The ablation thresholds were determined for pulses with a duration of 25 and 400 fs, respectively. Good agreement is obtained between theory and experiment. KW - Laser ablation KW - Pulse duration KW - Threshold of silicon PY - 2002 DO - https://doi.org/10.1016/S0169-4332(02)00458-0 SN - 0169-4332 SN - 1873-5584 VL - 197-198 SP - 839 EP - 844 PB - North-Holland CY - Amsterdam AN - OPUS4-6314 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Martin, Sven A1 - Hertwig, Andreas A1 - Lenzner, Matthias A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Spot-size dependence of the ablation threshold in dielectrics for femtosecond laser pulses N2 - The multi-pulse ablation threshold of barium borosilicate glass was measured using 30-fs pulses of a high repetition rate (1 kHz) laser system. The threshold fluence was found to decrease with increasing beam radius ranging from 20 to 400 m. Two existing models are applied by considering thermal accumulation and point defects, respectively . PY - 2003 DO - https://doi.org/10.1007/s00339-003-2213-6 SN - 0947-8396 VL - 77 IS - 7 SP - 883 EP - 884 PB - Springer CY - Berlin AN - OPUS4-6317 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - v. Woedtke, T. A1 - Abel, P. A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Subpicosecond-pulse laser microstructuring for enhanced reproducibility of biosensors N2 - Curved substrates can be micro-structured by laser ablation, which is not possible with standard lithographic methods. The novel femtosecond-pulse laser technique allows the production of defined and reproducible micro-perforations of originally analyte-impermeable membranes. The trans-membrane analyte flux can be controlled both by the variation of the laser focus diameter resulting in different areas of single perforations, and the number of perforations in arrays on small membrane areas. This leads to a higher degree of variability as well as reproducibility of the diffusion qualities of sensor membranes, and marks the main innovation with this technique compared to the hand-made mechanical perforation by specially grinded needles used up to now. Touchless micro-perforation of small membrane areas with negligible heat damage of the structures adjacent to the perforation allows the application of ‘analyte door’ membranes directly onto curved surfaces of miniaturized needle-sensors assigned for in vivo glucose monitoring, for the first time. KW - Biosensor KW - Glucose KW - Membrane perforation KW - Subpicosecond laser ablation KW - Reproducibility PY - 1997 DO - https://doi.org/10.1016/S0925-4005(97)80330-9 SN - 0925-4005 SN - 1873-3077 VL - 42 IS - 3 SP - 151 EP - 156 PB - Elsevier CY - Amsterdam [u.a.] AN - OPUS4-11513 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -