TY - JOUR A1 - Mann, Guido A1 - Vogel, Jens A1 - Zoheidi, M. A1 - Eberstein, Markus A1 - Krüger, Jörg T1 - Breakdown limits of optical multimode fibers for the application of nanosecond laser pulses at 532 nm and 1064 nm wavelength N2 - For many applications, optical multimode fibers are used for the transmission of powerful laser radiation. High light throughput and damage resistance are desirable. Laser-induced breakdown at the end faces of fibers can limit their performance. Therefore, the determination of laser-induced damage thresholds (LIDT) at the surface of fibers is essential. Nanosecond (1064 nm and 532 nm wavelength) single-shot LIDT were measured according to the relevant standard on SiO2 glass preforms (Suprasil F300) as basic materials of the corresponding fibers. For 10 kinds of fused silica fibers (FiberTech) with core diameters between 180 µm and 600 µm, an illumination approach utilizing a stepwise increase of the laser fluence on a single spot was used. For both wavelengths, the LIDT values (0% damage probability) obtained by means of the two methods were compared. The influence of surface preparation (polishing) on damage resistance was investigated. For equal surface finishing, a correlation between drawing speed of the fibers and their surface LIDT values was found. In addition to the surface measurements, bulk LIDT were determined for the preform material. KW - Fiber waveguides KW - Physical radiation damage KW - Laser-beam impact phenomena KW - Glasses KW - Radiation treatment PY - 2009 DO - https://doi.org/10.1016/j.apsusc.2008.07.157 SN - 0169-4332 SN - 1873-5584 VL - 255 IS - 10 SP - 5519 EP - 5522 PB - North-Holland CY - Amsterdam AN - OPUS4-19036 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Pentzien, Simone A1 - Pucko Mencigar, D. A1 - Strilic, M. T1 - The influence of paper type and state of degradation on laser cleaning of artifically soiled paper T2 - Konferenz LACONA 8 CY - Sibiu, Romania DA - 2009-09-21 PY - 2009 AN - OPUS4-19288 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Holle, H. A1 - Kautek, W. A1 - Pentzien, Simone A1 - Krüger, Jörg A1 - Mäder, M. A1 - Schreiner, M. T1 - Laser cleaning on historic picture postcards N2 - This contribution compares traditional cleaning and laser methods. Partial laser cleaning with a nanosecond pulse laser (wavelength of 532 nm) has proved very promising for future application in paper conservation-restoration. Traditional cleaning methods are not always sufficient or successful in surface cleaning of objects of art. Comparative studies of traditional paper cleaning methods and laser cleaning were made on several historic picture postcards printed with the chromolithography technique. PY - 2009 SN - 978-3-85028-490-5 SP - 189 EP - 206 PB - Berger Horn CY - Wien, Austria AN - OPUS4-20397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Lussky, K. A1 - Engel, P. A1 - Krüger, Jörg ED - Engel, Patricia T1 - Laser cleaning of artificially soiled paper N2 - Laser cleaning for works of art on paper might be a supplemental, noncontact method to overcome some of the limitations of traditional dry cleaning techniques. Three different types of paper (pure-cellulose filter paper, rag paper, and wood-pulp paper) were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples. These samples were characterized microscopically and by means of lightness measurements using a multi-spectral imaging system. A prototype laser workstation with Laser Class I conditions for the operator was used for the cleaning experiments. For 10-ns laser pulses at a wavelength of 532 nm, a set of laser parameters was established for a successful cleaning of the samples avoiding damage to the paper substrate. Single- and multi-pulse illumination conditions were tested. An extensive microscopic analysis after laser treatment of the cleaned parts of the samples provided insight into the remaining soiling on the surface and in the bulk of the paper material. PY - 2009 SN - 978-3-85028-490-5 SP - 171 EP - 188 PB - Berger Horn CY - Wien, Austria AN - OPUS4-20398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Jurke, Mathias A1 - Zoheidi, M. A1 - Eberstein, Markus A1 - Krüger, Jörg T1 - Influence of core diameter and coating material on nanosecond laser-induced damage threshold of optical multimode fibers N2 - Single and multi pulse laser-induced damage thresholds (LIDT) of core, cladding, and coating materials of high-power optical multimode fibers were determined in accordance with ISO 11254 for 532 nm and 1064 nm wavelength in the 10-ns pulse duration regime with spatial Gaussian beam shape. For all-silica fibers, LIDT increases with rising core diameter in a range between 100-600 µm for a constant cladding-core ratio of 1.2. The damage resistance of the low refracting cladding (0.3 % fluorine doped fused silica) is comparable to the undoped SiO2 core. Coating materials show significantly lower LIDT than light-guiding parts of the fibers. KW - Fiber waveguides (42.81.Qb) KW - Physical radiation damage (61.80.-x) KW - Laser-beam impact phenomena (79.20.Ds) KW - Glasses (81.05.Kf) PY - 2010 SN - 1454-4164 VL - 12 IS - 3 SP - 711 EP - 714 PB - INOE & INFM CY - Bucharest AN - OPUS4-21083 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Krüger, Jörg A1 - Berger, Georg T1 - Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy bone implant material N2 - Femtosecond lasers provide a novel method of attaching bioceramic material to a titanium alloy, thereby improving the quality of bone implants. The ultrashort 30 fs laser pulses (790 nm wavelength) penetrate a thin dip-coated layer of fine ceramic powder, while simultaneously melting a surface layer of the underlying metal. The specific adjustment of the laser parameters (pulse energy and number of pulses per spot) avoids unnecessary melting of the bioactive calcium phosphate, and permits a defined thin surface melting of the metal, which in turn is not heated throughout, and therefore maintains its mechanical stability. It is essential to choose laser energy densities that correspond to the interval between the ablation fluences of both materials involved: about 0.1-0.4 J cm-2. In this work, we present the first results of this unusual technique, including laser ablation studies, scanning electron microscopy and optical microscope images, combined with EDX data. KW - Bone implant KW - Bioceramic coating KW - Titanium KW - Calcium phosphate KW - Femtosecond laser PY - 2010 DO - https://doi.org/10.1016/j.actbio.2010.02.016 SN - 1742-7061 VL - 6 IS - 8 SP - 3318 EP - 3324 PB - Elsevier CY - Amsterdam AN - OPUS4-21446 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Koter, Robert A1 - Berger, Georg T1 - The production of metallic implant materials with a bioactive ceramic layer using femtosecond laser pluses T2 - ISL 2010 - 3rd International Symposium on Laser-Micromachining CY - Chemnitz, Germany DA - 2010-10-27 PY - 2010 AN - OPUS4-21901 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg T1 - Implications of transient changes of optical and surface properties of solids during femtosecond laser pulse irradiation to the formation of laser-induced periodic surface structures N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of silicon wafer surfaces by linearly polarized Ti:sapphire femtosecond laser pulses (pulse duration 130 fs, central wavelength 800 nm) is studied experimentally and theoretically. In the experiments, so-called low-spatial frequency LIPSS (LSFL) were found with periods smaller than the laser wavelength and an orientation perpendicular to the polarization. The experimental results are analyzed by means of a new theoretical approach, which combines the widely accepted LIPSS theory of Sipe et al. with a Drude model, in order to account for transient (intra-pulse) changes of the optical properties of the irradiated materials. It is found that the LSFL formation is caused by the excitation of surface plasmon polaritons, SPPs, once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material and the subsequent interference between its electrical field with that of the incident laser beam resulting in a spatially modulated energy deposition at the surface. Moreover, the influence of the laser-excited carrier density and the role of the feedback upon the multi-pulse irradiation and its relation to the excitation of SPP in a grating-like surface structure is discussed. KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures KW - (LIPSS) KW - Optical properties KW - Surface plasmon polaritons KW - Semiconductors KW - Silicon PY - 2011 DO - https://doi.org/10.1016/j.apsusc.2010.11.059 SN - 0169-4332 SN - 1873-5584 VL - 257 IS - 12 SP - 5420 EP - 5423 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-23309 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Koter, Robert A1 - Berger, Georg A1 - Krüger, Jörg T1 - Fixation of bioactive calcium alkali phosphate on Ti6Al4V implant material with femtosecond laser pulses N2 - Bone implants made of metal, often titanium or the titanium alloy Ti6Al4V, need to be surface treated to become bioactive. This enables the formation of a firm and durable connection of the prosthesis with the living bone. We present a new method to uniformly cover Ti6Al4V with a thin layer of ceramics that imitates bone material. These calcium alkali phosphates, called GB14 and Ca10, are applied to the metal by dip coating of metal plates into an aqueous slurry containing the fine ceramic powder. The dried samples are illuminated with the 790 nm radiation of a pulsed femtosecond laser. If the laser fluence is set to a value just below the ablation threshold of the ceramic (ca. 0.4 J/cm²) the 30 fs laser pulses penetrate the partly transparent ceramic layer of 20–40 µm thickness. The remaining laser fluence at the ceramic–metal interface is still high enough to generate a thin metal melt layer leading to the ceramic fixation on the metal. The laser processing step is only possible because Ti6Al4V has a lower ablation threshold (between 0.1 and 0.15 J/cm²) than the ceramic material. After laser treatment in a fluence range between 0.1 and 0.4 J/cm², only the particles in contact with the metal withstand a post-laser treatment (ultrasonic cleaning). The non-irradiated rest of the layer is washed off. In this work, we present results of a successful ceramic fixation extending over larger areas. This is fundamental for future applications of arbitrarily shaped implants. KW - Bone implant KW - Bioceramic coating KW - Titanium KW - Calcium phosphate KW - Femtosecond laser PY - 2011 DO - https://doi.org/10.1016/j.apsusc.2010.10.046 SN - 0169-4332 SN - 1873-5584 VL - 257 IS - 12 SP - 5208 EP - 5212 PB - North-Holland CY - Amsterdam AN - OPUS4-23310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Rosenfeld, A. A1 - Krüger, Jörg ED - Panchenko, V. ED - Mourou, G. ED - Zheltikov, A. M. T1 - Femtosecond laser-induced periodic surface structures: recent approaches to explain their sub-wavelength periodicities N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of semiconductors and dielectrics by linearly polarized high-intensity Ti:sapphire fs-laser pulses (τ ~100 fs, λ ~800 nm) is studied experimentally and theoretically. In the experiments, two different types of LIPSS exhibiting very different spatial periods are observed (socalled LSFL – low spatial frequency LIPSS, and HSFL - high spatial frequency LIPSS), both having a different dependence on the incident laser fluence and pulse number per spot. The experimental results are analyzed by means of a new theoretical approach, which combines the generally accepted LIPSS theory of J. E. Sipe and co-workers [Phys. Rev. B 27, 1141-1154 (1983)] with a Drude model, in order to account for transient changes of the optical properties of the irradiated materials. The joint Sipe-Drude model is capable of explaining numerous aspects of fs-LIPSS formation, i.e., the orientation of the LIPSS, their fluence dependence as well as their spatial periods. The latter aspect is specifically demonstrated for silicon crystals, which show experimental LSFL periods Λ somewhat smaller than λ. This behaviour is caused by the excitation of surface plasmon polaritons, SPP, (once the initially semiconducting material turns to a metallic state upon formation of a dense free-electron-plasma in the material) and the subsequent interference between its electrical fields with that of the incident laser beam, resulting in a spatially modulated energy deposition at the surface. Upon multi-pulse irradiation, a feedback mechanism, caused by the redshift of the resonance in a grating-assisted SPP excitation, is further reducing the LSFL spatial periods. The SPP-based mechanism of LSFL successfully explains the remarkably large range of LSFL periods between ~0.6 λ and λ. T2 - LAT 2010 - International Conference on Lasers, Applications, and Technologies CY - Kazan, Russia DA - 23.08.2010 KW - Femtosecond laser ablation KW - Laser-induced periodic surface structures (LIPSS) KW - Surface plasmon polaritons KW - Second harmonic generation (SHG) KW - Silicon KW - Semiconductors KW - Dielectrics PY - 2011 DO - https://doi.org/10.1117/12.879813 SN - 0277-786X N1 - Serientitel: Proceedings of SPIE – Series title: Proceedings of SPIE VL - 7994 SP - 79940M-1 EP - 79940M-10 CY - Bellingham, USA AN - OPUS4-23291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rohloff, M. A1 - Das, S.K. A1 - Höhm, S. A1 - Grunwald, R. A1 - Rosenfeld, A. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Formation of laser-induced periodic surface structures on fused silica upon multiple cross-polarized double-femtosecond-laser-pulse irradiation sequences N2 - The formation of laser-induced periodic surface structures (LIPSS) upon irradiation of fused silica with multiple irradiation sequences consisting of five Ti:sapphire femtosecond (fs) laser pulse pairs (150 fs, 800 nm) is studied experimentally. A Michelson interferometer is used to generate near-equal-energy double-pulse sequences with a temporal pulse delay from -20 to +20 ps between the cross-polarized individual fs-laser pulses (~0.2 ps resolution). The results of multiple double-pulse irradiation sequences are characterized by means of Scanning Electron and Scanning Force Microscopy. Specifically in the sub-ps delay domain striking differences in the surface morphologies can be observed, indicating the importance of the laser-induced free-electron plasma in the conduction band of the solids for the formation of LIPSS. KW - Atomic force microscopy KW - Conduction bands KW - High-speed optical techniques KW - Laser beam effects KW - Scanning electron microscopy KW - Silicon compounds KW - Surface morphology PY - 2011 DO - https://doi.org/10.1063/1.3605513 SN - 0021-8979 SN - 1089-7550 VL - 110 IS - 1 SP - 014910-1 - 014910-4 PB - American Institute of Physics CY - Melville, NY AN - OPUS4-24049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - The influence of paper type and state of degradation on laser cleaning of artificially soiled paper N2 - Lasers can be a supplemental tool for restorers to overcome some of the limitations of traditional dry cleaning techniques for works of art on paper. The laser working range has to be optimized allowing for safe removal of contamination and limitation of damage to the substrate. This paper addresses the influence of paper type and state of degradation on laser working range. Three types of new paper (pure cellulose, bleached pulp paper, rag paper) were degraded and characterized with respect their degree of polymerization. Laser-induced damage thresholds of new and degraded paper were determined using SEM and viscometry. Additionally, artificially soiled model samples were made using two kinds of soiling, namely pulverized charcoal and soot-blackened standard test dust. Cleaning thresholds of soiled paper samples were evaluated. A working range for all combinations of paper and soiling between 0.05 J/cm2 and 0.5 J/cm2 was found for the application of 8-ns laser pulses at 532 nm wavelength. T2 - LACONA VIII - Lasers in the Conservation of Artworks VIII CY - Sibiu, Romania DA - 21.09.2009 KW - Nanosecond laser cleaning KW - Paper KW - Ageing KW - Degree of polymerization KW - Cleaning threshold KW - Damage threshold PY - 2011 SN - 978-0-415-58073-1 SP - 59 EP - 65 PB - Taylor & Francis CY - London, UK AN - OPUS4-23634 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg T1 - Modifikation und Zerstörung von optischen Komponenten als Limit für die Anwendung ultrakurzer Laserimpulse T2 - Institutskolloquium Leibniz-Institut für Oberflächenmodifizierung CY - Leipzig, Germany DA - 2009-05-07 PY - 2009 AN - OPUS4-19112 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Jörg A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Lußky, Katharina A1 - Engel, P. ED - Günter Wiedemann, ED - Udo Klotzbach, ED - Ulrich Bauer-Bornemann, T1 - Laserreinigung von künstlich verschmutzten europäischen Papieren des 19. Jahrhunderts N2 - Diese Arbeit beschreibt die Laserreinigung von gebräuchlichen Papieren des 19. Jahrhunderts in Kombination mit zwei Schmutzvarianten. Aufgrund der weiten Verbreitung in Bibliotheken und Kunstsammlungen wurden Hadernpapier und holzhaltiges Papier ausgewählt. Als Referenz diente Whatman-Filterpapier. Zur künstlichen Verschmutzung wurden Zeichenkohle oder Standardschmutz (Standard Test Dust SAE J 726 fine, mit Flammruß im Verhältnis 20:1 gemischt) mit Hilfe von Pinsel und Staubsauger jeweils auf die drei Papierarten aufgetragen und in den Faserverbund eingesaugt. Die Nutzung von Modellproben erweist sich für grundlegende Untersuchungen als vorteilhaft, da das Vorhandensein hinreichend großer Flächen (gleichartiger Objekte) für einen Vergleich mit Ergebnissen klassischer Reinigungstechniken unabdingbar ist. Die preiswerten Proben erlauben darüber hinaus auch die Anwendung zerstörender Analysetechniken. Für die Laserreinigungsexperimente wurde ein Nd:YAG-Laser mit Impulsdauern in der Größenordnung von 10 ns bei 532 nm Wellenlänge und einer Repetitionsrate von 500 Hz verwendet. Die Laser-Bearbeitungsstation erlaubt die flächige Bearbeitung von Objekten, wobei der Laserstrahl bewegt wird. Der Laser wird mittels Computer ferngesteuert und unter Klasse-1-Sicherheitsbedingungen betrieben. Bei der Untersuchung der Modellproben wurde jeweils die Anzahl der Impulse pro Probenstelle sowie die Laser-Energiedichte variiert. Ziel der Arbeiten war die Ermittlung eines Laser-Arbeitsbereiches für die Reinigung der verschiedenen Papierproben. Die Modellobjekte wurden vor und nach der Laserbehandlung mittels lichtmikroskopischer, rasterelektronenmikroskopischer und colorimetrischer Analysemethoden untersucht. T2 - Tagung "Laseranwendung in Restaurierung und Denkmalpflege" CY - Osnabrück, Deutschland DA - 2009-01-30 KW - Laserreinigung KW - Nd:YAG-Laser KW - Hadernpapier KW - Holzhaltiges Papier KW - Filterpapier KW - Mikroskopie KW - Farbmessung PY - 2009 SN - 978-3-8167-8106-6 SP - 177 EP - 189 PB - Fraunhofer IRB Verl. CY - Stuttgart AN - OPUS4-20059 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Symietz, Christian A1 - Lehmann, Erhard A1 - Gildenhaar, Renate A1 - Krüger, Jörg A1 - Berger, Georg T1 - Fixierung resorbierbarer Knochenersatzkeramik auf Ti6Al4V-Implantatmaterial mittels Femtosekundenlaser T2 - 5. Thüringer Grenz- und Oberflächentage und 7. Thüringer Biomaterial-Kolloquium CY - Friedrichroda, Deutschland DA - 2009-09-15 KW - Metallprothese KW - Implantat KW - Knochenersatz KW - Bioaktives Material KW - Lasersintern KW - Femtosekundenlaser PY - 2009 SN - 978-3-00-028446-5 SP - 327 AN - OPUS4-20051 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Bonse, Jörn A1 - Solis, J. A1 - Spielmann, C. A1 - Lippert, T. A1 - Krüger, Jörg T1 - Damage mechanisms in polymers upon NIR femtosecond pulse laser irradiation: sub-threshold processes and their implications for laser safety applications N2 - This contribution investigates laser-induced damage of thin film and bulk polymer samples, with the focus on physical processes occurring close to the damage threshold. In-situ real-time reflectivity (RTR) measurements with picosecond (ps) and nanosecond (ns) temporal resolution were performed on thin polymer films on a timescale up to a few microseconds (µs). A model for polymer thin film damage is presented, indicating that irreversible chemical modification processes take place already below the fluence threshold for macroscopic damage. On dye-doped bulk polymer filters (as used for laser goggles), transmission studies using fs-and ps-laser pulses reveal the optical saturation behavior of the material and its relation to the threshold of permanent damage. Implications of the sub-threshold processes for laser safety applications will be discussed for thin film and bulk polymer damage. T2 - International high-power laser ablation conference CY - Santa Fe, USA DA - 2010-04-18 KW - Polymer KW - Laser damage KW - Ultrashort laser pulses KW - Time-resolved reflectivity measurements KW - Laser safety PY - 2010 UR - http://link.aip.org/link/?APCPCS/1278/56/1 SN - 978-0-7354-0828-9 DO - https://doi.org/10.1063/1.3507148 N1 - Serientitel: AIP conference proceedings – Series title: AIP conference proceedings IS - 1278 SP - 56 EP - 64 PB - American Institute of Physics CY - Melville, NY, USA AN - OPUS4-22156 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg T1 - Cleaning of artificially soiled paper using nanosecond, picosecond and femtosecond laser pulses N2 - Cleaning of cultural assets, especially fragile organic materials like paper, is a part of the conservation process. Laser radiation as a non-contact tool offers prospects for that purpose. For the studies presented here, paper model samples were prepared using three different paper types (pure cellulose, rag paper, and wood-pulp paper). Pure cellulose serves as reference material. Rag and woodpulp paper represent essential characteristics of the basic materials of real-world artworks. The papers were mechanically soiled employing pulverized charcoal. Pure and artificially soiled paper samples were treated with laser pulses of 28 fs (800 nm wavelength) and 8–12 ns (532 nm) duration in a multi pulse approach. Additionally, the cellulose reference material was processed with 30 ps (532 nm) laser pulses. Damage and cleaning thresholds of pure and soiled paper were determined for the different laser regimes. Laser working ranges allowing for removal of contamination and avoiding permanent modification to the substrate were found. The specimens prior and after laser illumination were characterized by light-optical microscopy (OM) and scanning electron microscopy (SEM) as well as multi spectral imaging analysis. The work extends previous nanosecond laser cleaning investigations on paper into the ultra-short pulse duration domain. KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser PY - 2010 DO - https://doi.org/10.1007/s00339-010-5809-7 SN - 0947-8396 VL - 101 IS - 2 SP - 441 EP - 446 PB - Springer CY - Berlin AN - OPUS4-22155 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg ED - Engel, P. ED - Schirò, J. ED - Larsen, R. ED - Moussakova, E. ED - Kecskeméti, I. T1 - Cleaning of soiled paper model samples using short and ultrashort laser pulses N2 - Paper is one of the most important materials representing and witnessing human culture particularly as a carrier medium for text and image. As soiling hampers the reception of information, paper cleaning techniques are needed. Traditional mechanical and chemical cleaning methods are used by conservator-restorers. In some cases, a classical cleaning procedure of paper objects yields unsatisfactory results or a conventional treatment is even impossible. Especially, fragile paper objects cause problems due to mechanical instabilities. Laser cleaning as a non-contact method might be a way to overcome some of the limitations of classical cleaning techniques. Laser parameters have to be chosen to achieve removal of the soiling without influencing the artwork. Any immediate as well as long-term effects causing an irreversible change of the artwork have to be avoided. At present, most laser applications are found in stone and metal conservation, while laser treatment of complex organic materials like paper is still not fully developed for application in conservators' workshops. This contribution describes recent work of pulsed laser cleaning of soiled model samples. Pure cellulose, rag paper and wood-pulp paper were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples representing essential characteristics of contaminated real-world artworks. Afterwards, model samples were cleaned using short and ultrashort laser pulses in the nanosecond and femtosecond time domain, respectively. An extensive analysis of the model samples after laser treatment using an optical microscope and a multi-spectral imaging system allows a comparison of the cleaning results obtained with both laser sources. T2 - Conference 'New Approaches to Book and Paper Conservation - Restoration' CY - Horn, Austria DA - 09.05.2011 KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser KW - Nanosecond laser PY - 2011 SN - 978-3-85028-518-6 SP - 519 EP - 532 PB - Verlag Berger, Horn CY - Vienna, Austria AN - OPUS4-23705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Derrien, T. J.-Y. A1 - Krüger, Jörg A1 - Bonse, Jörn T1 - Properties of surface plasmon polaritons on lossy materials: lifetimes, periods and excitation conditions N2 - The possibility to excite surface plasmon polaritons (SPPs) at the interface between two media depends on the optical properties of both media and geometrical aspects. Specific conditions allowing the coupling of light with a plasmon-active interface must be satisfied. Plasmonic effects are well described in noble metals where the imaginary part of the dielectric permittivity is often neglected ('perfect medium approximation (PMA)'). However, some systems exist for which such approximation cannot be applied, hence requiring a refinement of the common SPP theory. In this context, several properties of SPPs such as excitation conditions, period of the electromagnetic field modulation and SPP lifetime then may strongly deviate from that of the PMA. In this paper, calculations taking into account the imaginary part of the dielectric permittivities are presented. The model identifies analytical terms which should not be neglected in the mathematical description of SPPs on lossy materials. These calculations are applied to numerous material combinations resulting in a prediction of the corresponding SPP features. A list of plasmon-active interfaces is provided along with a quantification of the above mentioned SPP properties in the regime where the PMA is not applicable. KW - plasmon lifetime KW - surface plasmon polaritons KW - lossy materials PY - 2016 DO - https://doi.org/10.1088/2040-8978/18/11/115007 SN - 2040-8986 (online) / 2040-8978 (print) VL - 18 IS - 11 SP - 115007 PB - IOP Publishing Ltd AN - OPUS4-37905 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Symietz, Christian T1 - Femtosecond laser induced fixation of calcium alkali phosphate ceramics on titanium alloy implant material T2 - EMN Meeting on Biomaterials CY - Beijing, China DA - 2015-04-10 PY - 2015 AN - OPUS4-33097 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -