TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Niino, H. T1 - Biomaterial immobilization on polyurethane films by XeCl excimer laser processing JF - Applied physics A N2 - Zusammenfassung The surface chemical modification of polyurethane (PU) films was performed by an UV laser-induced chemical reaction in a polysaccharide solution. This process may be applicable as hydrophilic packaging of implantable medical devices and in vivo sensors. When a PU film in contact with an aqueous alginic acid (AAC) solution was irradiated with a XeCl laser, the PU film turned hydrophilic. Contact angles of water on the film were reduced from 110° to 60°. Since light absorption of the AAC solution at 308 nm was negligibly small, reactive sites were generated solely on the PU surface. There, AAC could be immobilized by chemical bonds thus allowing for a nanometer-scaled grafting of this biomolecule. The mechanism was investigated by surface analyses with Fourier-transform infrared spectroscopy (FT-IR), dye staining, ultraviolet-visible (UV-VIS) spectroscopy, and scanning electron microscopy (SEM) techniques. A one-photon photochemical process could beidentified. PY - 2001 DO - https://doi.org/10.1007/s003390000617 SN - 0947-8396 VL - 72 IS - 1 SP - 53 EP - 57 PB - Springer CY - Berlin AN - OPUS4-926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rudolph, Pascale A1 - Krüger, Jörg A1 - Baudach, Steffen A1 - Kautek, Wolfgang T1 - Femtosecond pulse laser processing of TiN on silicon JF - Applied surface science N2 - Ultrashort pulse laser microstructuring (pulse duration 130 fs, wavelength 800 nm, repetition rate 2 Hz) of titanium nitride (TiN) films on silicon substrates was performed in air using the direct focusing technique. The lateral and vertical precision of laser ablation was evaluated. The TiN ablation threshold changed with the number of pulses applied to the surface due to an incubation effect. An ablation depth per pulse below the penetration depth of light was observed. Columnar structures were formed in the silicon substrate after drilling through the TiN layer. KW - Femtosecond laser ablation KW - Titanium nitride KW - Silicon KW - Optical properties PY - 2000 DO - https://doi.org/10.1016/S0169-4332(99)00481-X SN - 0169-4332 SN - 1873-5584 VL - 154-155 SP - 659 EP - 663 PB - North-Holland CY - Amsterdam AN - OPUS4-802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baudach, Steffen A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate JF - Applied surface science N2 - Ablation experiments with ultrashort laser pulses (pulse duration 150 fs, wavelength 800 nm) on polymers (PC, PMMA) relevant for biomedical technology have been performed in air. The lateral and vertical machining precision was evaluated by optical, atomic force and scanning electron microscopy. The ablation threshold reaches values in the range of 0.5–2.5 J/cm2 and depends significantly on the number of laser pulses applied to the same spot. The hole diameters are influenced by the laser fluence and the number of laser pulses. The relation between the ablation threshold and the number of laser pulses applied to the same spot is described in accordance with an incubation model. KW - Femtosecond laser ablation KW - Polymer KW - Polycarbonate KW - Polymethylmethacrylate PY - 2000 DO - https://doi.org/10.1016/S0169-4332(99)00474-2 SN - 0169-4332 SN - 1873-5584 VL - 154-155 SP - 555 EP - 560 PB - North-Holland CY - Amsterdam AN - OPUS4-803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Sartania, S. A1 - Spielmann, Ch. A1 - Krausz, F. T1 - Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps JF - Applied surface science KW - Laser micromachining KW - Subpicosecond laser ablation KW - Barium aluminium borosilicate glass PY - 1998 SN - 0169-4332 SN - 1873-5584 IS - 127-129 SP - 892 EP - 898 PB - North-Holland CY - Amsterdam AN - OPUS4-887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - The Femtosecond Pulse Laser: a New Tool for Micromachining JF - Laser physics KW - Femtosekundenlaser KW - Mikrobearbeitung PY - 1999 SN - 1054-660X SN - 1531-8494 IS - 9,1 SP - 30 EP - 40 PB - MAIK Nauka/Interperiodica Publ. CY - Moscow AN - OPUS4-712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Krausz, F. T1 - Precision laser ablation of dielectrics in the 10-fs regime JF - Applied physics A N2 - Zusammenfassung Laser pulses in the 10-fs domain provide a quality of micromachining of fused silica and borosilicate glass that is unobtainable with longer pulses in the range of several 100 femtoseconds up to picoseconds. The shortening of the pulses reduces the statistical behavior of the material removal and the ablation process thus attains a more deterministic and reproducible character. The improved reproducibility of ablation is accompanied by significantly smoother morphology. This offers the potential for lateral and vertical machining precision of the order of 100 nm and 10 nm, respectively. KW - Laser ablation PY - 1999 DO - https://doi.org/10.1007/s003390050906 SN - 0947-8396 VL - 68 IS - 3 SP - 369 EP - 371 PB - Springer CY - Berlin AN - OPUS4-825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Wrobel, Jerzy A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Ultrashort-pulse laser ablation of indium phosphide in air JF - Applied physics A N2 - Ablation of indium phosphide wafers in air was performed with low repetition rate ultrashort laser pulses (130 fs, 10 Hz) of 800 nm wavelength. The relationships between the dimensions of the craters and the ablation parameters were analyzed. The ablation threshold fluence depends on the number of pulses applied to the same spot. The single-pulse ablation threshold value was estimated to be fth(1)=0.16 J/cm2. The dependence of the threshold fluence on the number of laser pulses indicates an incubation effect. Morphological and chemical changes of the ablated regions were characterized by means of scanning electron microscopy and Auger electron spectroscopy. PY - 2001 DO - https://doi.org/10.1007/s003390000596 SN - 0947-8396 VL - 72 IS - 1 SP - 89 EP - 94 PB - Springer CY - Berlin AN - OPUS4-1068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Brzezinka, Klaus-Werner T1 - Pulsed-laser deposition and boron-blending of diamond-like carbon (DLC) thin films JF - Applied surface science KW - Pulslaser KW - Bor KW - Dünnfilmtechnologie KW - Dünnfilm, diamantartig PY - 1996 SN - 0169-4332 SN - 1873-5584 VL - 106 SP - 158 EP - 165 PB - North-Holland CY - Amsterdam AN - OPUS4-630 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Rudolph, Pascale A1 - Krüger, Jörg A1 - Rosenfeld, A. A1 - Lorenz, M. A1 - Ashkenasi, D. T1 - Morphological and mechanical investigations of bariumalumoborosilicate glass surfaces processed with 700-fs laser pulses JF - Applied physics A N2 - We present surface micro-modifications of bariumalumoborosilicate glasses with a high transformation temperature near 700 °C. Laser processing of the glass substrate was realized by using ultra-short laser pulses at 800 nm. The morphological conversion of the laser-treated surfaces was characterized by scanning force microscopy and nano-indentation. A hardness increase by at least a factor of six on the laser ablation crater edge relative to illuminated non- ablated areas shows that the material in the crater walls underwent drastic morphological and mechanical changes. In this heat- and shock-affected zone, the material became more elastic as a result of increased stress. T2 - 5th International Conference on Laser Ablation ; COLA '99 CY - Göttingen, Germany DA - 1999-07-19 KW - Bariumalumoborosilicate glass surfaces PY - 1999 DO - https://doi.org/10.1007/s003390051523 SN - 0947-8396 VL - 69 IS - 7 SP - S759 EP - S761 PB - Springer CY - Berlin AN - OPUS4-775 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Newesely, H. T1 - Femtosecond-pulse laser ablation of dental hydroxyapatite and single-crystalline fluoroapatite JF - Applied physics A N2 - Laser microdrilling of healthy human enamel and dentine using 300 fs pulses at a wavelength of 615 nm and 3 Hz repetition rate leads to an enhanced structuring quality in comparison with nanosecond-laser results. Microcracking and damage to neighboring tissue can be reduced. Ablation threshold fluences for 100 laser pulses of 0.3 J cm-2 (human dentine), 0.6 J cm-2 (human enamel) and 0.8 J cm-2 (single crystalline fluoroapatite) could be determined. Ablation depths per pulse below 1 7m were observed. T2 - 5th International Conference on Laser Ablation ; COLA '99 CY - Göttingen, Germany DA - 1999-07-19 PY - 1999 DO - https://doi.org/10.1007/s003390051426 SN - 0947-8396 VL - 69 IS - 7 SP - S403 EP - S407 PB - Springer CY - Berlin AN - OPUS4-779 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Krausz, F. T1 - Incubation of laser ablation in fused silica with 5-fs pulses JF - Applied physics A N2 - Zusammenfassung The threshold fluences for laser-induced damage of fused silica with single 5-fs pulses from a Ti:sapphire laser system were determined by extrapolating the ablated volume to zero. These thresholds are about 4 times as high as the values previously obtained from multi-shot experiments. This result is interpreted in terms of an irreversible modification of the original material below the single-shot threshold (incubation). KW - Laser PY - 1999 DO - https://doi.org/10.1007/s003390051034 SN - 0947-8396 VL - 69 IS - 4 SP - 465 EP - 466 PB - Springer CY - Berlin AN - OPUS4-799 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Krausz, F. T1 - Photoablation with sub-10 fs laser pulses JF - Applied surface science N2 - Ablation experiments in several glasses with single and multishot irradiation by laser pulses in the 10-fs pulse duration domain are presented; physical and technological implications are discussed. We demonstrate that these short pulses offer the potential for lateral and vertical machining precision of the order of 100 nm. KW - Ablation KW - Laser pulses KW - Femtosecond pulses PY - 2000 DO - https://doi.org/10.1016/S0169-4332(99)00432-8 SN - 0169-4332 SN - 1873-5584 VL - 154-155 SP - 11 EP - 16 PB - North-Holland CY - Amsterdam AN - OPUS4-800 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rudolph, Pascale A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Femtosecond- and nanosecond-pulse laser ablation of bariumalumoborosilicate glass JF - Applied physics A N2 - Laser ablation with femtosecond pulses (130 fs, wavelength 800 nm, repetition rate 2 Hz) was compared with nanosecond-pulse ablation (10 ns, wavelength 266 nm, repetition rate 2.5 Hz) of bariumalumoborosilicate glass in air using the direct focusing technique. Different ablation thresholds and heat-affected zones were observed. The lateral and vertical machining precision was evaluated. Single nanosecond laser pulses in the far UV resulted in a bubble or a circular hole in the centre of the illuminated spot, depending on the applied fluence. The ablation behaviour in the case of near-IR femtosecond pulses contrasted to this. Bubble formation was not detected. It needed repeated pulses at the same spot to modify the surface until material removal could be observed (incubation). Cavity dimensions of less than the beam diameter were achieved in this case. T2 - 5th International Conference on Laser Ablation ; COLA '99 CY - Göttingen, Germany DA - 1998-07-19 KW - Laser ablation KW - Bariumalumoborosilicate glass PY - 1999 DO - https://doi.org/10.1007/s003390051524 SN - 0947-8396 VL - 69 IS - 7 SP - S763 EP - S766 PB - Springer CY - Berlin AN - OPUS4-801 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Kautek, Wolfgang A1 - Krüger, Jörg A1 - Welsch, E. T1 - Femtosecond laser damage of a high reflecting mirror JF - Thin solid films N2 - Multiple pulse investigations of 130-fs Ti:sapphire laser-induced damage of a high reflecting mirror consisting of alternating ?/4-layers of Ta2O5 and SiO2 and a single 500-nm Ta2O5 film were performed. In both cases, fused silica served as the substrate. For a fixed number of 1000 laser pulses per spot, a decrease in the damage threshold fluence of the mirror by a factor of two was observed by changing the repetition rate from 10 Hz to 1 kHz. A single 500-nm Ta2O5 film shows higher damage resistance compared to the mirror. The mirror and the Ta2O5 film samples were partially coated with a 300-nm-thick aluminium layer. The aluminium coating does not influence the damage threshold of the dielectrics underneath. KW - Aluminium KW - Laser ablation KW - Optical coatings KW - Silicon oxide PY - 2002 DO - https://doi.org/10.1016/S0040-6090(02)00074-3 SN - 0040-6090 IS - 408 SP - 297 EP - 301 PB - Elsevier CY - Amsterdam AN - OPUS4-1382 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Niino, Hiroyuki A1 - Yabe, A. T1 - Investigation of excimer laser ablation threshold of polymers using a microphone JF - Applied surface science N2 - KrF excimer laser ablation of polyethylene terephthalate (PET), polyimide (PI) and polycarbonate (PC) in air was studied by an in situ monitoring technique using a microphone. The microphone signal generated by a short acoustic pulse represented the etch rate of laser ablation depending on the laser fluence, i.e., the ablation “strength”. From a linear relationship between the microphone output voltage and the laser fluence, the single-pulse ablation thresholds were found to be 30 mJ cm-2 for PET, 37 mJ cm-2 for PI and 51 mJ cm-2 for PC (20-pulses threshold). The ablation thresholds of PET and PI were not influenced by the number of pulses per spot, while PC showed an incubation phenomenon. A microphone technique provides a simple method to determine the excimer laser ablation threshold of polymer films. KW - Laser ablation KW - Polymer KW - Treshold KW - Microphone KW - Acoustic measurement KW - Incubation PY - 2002 DO - https://doi.org/10.1016/S0169-4332(02)00418-X SN - 0169-4332 SN - 1873-5584 VL - 197-198 SP - 800 EP - 804 PB - North-Holland CY - Amsterdam AN - OPUS4-1920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Rudolph, Pascale A1 - Daminelli-Widany, Grazia A1 - Krüger, Jörg T1 - Physico-chemical aspects of femtosecond-pulse-laser-induced surface nanostructures JF - Applied physics A N2 - Near-ablation threshold investigations focusing on the generation of periodic nanostructures and their correlation with physico-chemical properties of the solid phase such as e.g., the material-dependent surface energy, were conducted. Molecular dynamic modelling in the sub-picosecond time domain was used to consider ultrafast opto-electronic processes triggering surface reorganization reactions. Fluid containment of solid interfaces showed strong influence on the resulting micro- and nanostructures due to its drastic reduction of the surface energy. The phenomena are discussed in respect to the minimization of the surface free energy in dependence of material composition and interfacial structure. PY - 2005 DO - https://doi.org/10.1007/s00339-005-3211-7 SN - 0947-8396 VL - 81 SP - 65 EP - 70 PB - Springer CY - Berlin AN - OPUS4-7403 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Martin, Sven A1 - Mädebach, Heinrich A1 - Urech, L. A1 - Lippert, T. A1 - Wokaun, A. A1 - Kautek, Wolfgang T1 - Femto- and nanosecond laser treatment of doped polymethylmethacrylate JF - Applied surface science N2 - Femto- and nanosecond laser ablation of polymethylmethacrylate (PMMA) and PMMA doped with a linear absorber was investigated in the infrared spectral region. Ablation thresholds were determined and incubation phenomena were identified. The ‘degree’ of incubation was calculated employing a phenomenological model. The influence of the pulse duration on the machining quality of the polymers was examined. The presence of an absorbing chromophore is not a prerequisite for a controllable fs-laser structuring in contrast to the ns-treatment. Surface swelling always accompanied ablation. KW - Laser ablation KW - Laser beam machining KW - Doping thin films KW - Polymers-radiation effects PY - 2005 DO - https://doi.org/10.1016/j.apsusc.2005.01.078 SN - 0169-4332 SN - 1873-5584 VL - 247 SP - 406 EP - 411 PB - North-Holland CY - Amsterdam AN - OPUS4-7470 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Daminelli-Widany, Grazia A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Femtosecond laser interaction with silicon under water confinement JF - Thin solid films N2 - Femtosecond laser interaction with silicon was investigated in water and in air, with 130-fs laser pulses at 800 nm wavelength. Under water confinement, higher modification thresholds, lower ablation depths and similar incubation factors were found in comparison to the dry experiment. Morphological features of the laser-induced cavities also differed. In contrast to air experiments, debris redeposition was negligible, while the ablated material remained suspended in the water layer phase. Underwater cavities obtained at high fluences and high number of pulses per spot showed anomalous profiles, consistent with a strong spatial deformation of the laser beam coupled into the target. Ripples formed at the edges of the modified area showed varying spacings: f100 and f700 nm for water and air experiments, respectively. Differences to the air experiment were related to a complex combination of fluence-dependent non-linear effects occurring in the water layer and to pulse-number-dependent shielding effects induced by cavitation bubbles and suspended ablated material. KW - Laser ablation KW - Silicon KW - Solid electrolyte interface KW - Water PY - 2004 DO - https://doi.org/10.1016/j.tsf.2004.04.043 SN - 0040-6090 VL - 467 IS - 1-2 SP - 334 EP - 341 PB - Elsevier CY - Amsterdam AN - OPUS4-4008 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Sorg, N. A1 - Reif, J. A1 - Kautek, Wolfgang T1 - In situ second harmonic generation measurements during the electrodeposition of Ni on n-Si(111) JF - Applied surface science PY - 1993 SN - 0169-4332 SN - 1873-5584 VL - 69 SP - 388 EP - 392 PB - North-Holland CY - Amsterdam AN - OPUS4-11657 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Mitterer, S. A1 - Krüger, Jörg A1 - Husinsky, W. A1 - Grabner, G. T1 - Femtosecond-Pulse Laser Ablation of Human Corneas JF - Applied physics A N2 - A femtosecond pulse laser in the visible spectral region shows promise as a potentially new powerful corneal sculpting tool. It combines the clinical and technical advantages of visible wavelengths with the high ablation quality observed with nanosecond-pulse excimer lasers at 193 nm. A femtosecond and a nanosecond dye laser with pulse durations of 300 fs and 7 ns, and centre wavelengths at 615 nm and 600 nm, respectively, both focused to an area of the order of 10–5 cm2, have been applied to human corneal ablation. Nanosecond laser pulses caused substantial tissue disruption within a 30–100 m range from the excision edge at all fluences above the ablation threshold of F th60 J cm–2 (I th9 GW cm–2). Completely different excisions are produced by the femtosecond-pulse laser: high quality ablations of the Bowman membrane and the stroma tissue characterised by damage zones of less than 0.5 m were observed at all fluences above ablation threshold of F th1 J cm–2 or I th3 TW cm–2 (3×1012 W cm–2). The transparent cornea material can be forced to absorb ultrashort pulses of extremely high intensity. The fs laser generates its own absorption by a multiphoton absorption process. PY - 1994 DO - https://doi.org/10.1007/BF00332446 SN - 0947-8396 VL - 58 IS - 5 SP - 513 EP - 518 PB - Springer CY - Berlin AN - OPUS4-11659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -