TY - JOUR A1 - Kautek, Wolfgang A1 - Mitterer, S. A1 - Krüger, Jörg A1 - Husinsky, W. A1 - Grabner, G. T1 - Femtosecond-Pulse Laser Ablation of Human Corneas JF - Applied physics A N2 - A femtosecond pulse laser in the visible spectral region shows promise as a potentially new powerful corneal sculpting tool. It combines the clinical and technical advantages of visible wavelengths with the high ablation quality observed with nanosecond-pulse excimer lasers at 193 nm. A femtosecond and a nanosecond dye laser with pulse durations of 300 fs and 7 ns, and centre wavelengths at 615 nm and 600 nm, respectively, both focused to an area of the order of 10–5 cm2, have been applied to human corneal ablation. Nanosecond laser pulses caused substantial tissue disruption within a 30–100 m range from the excision edge at all fluences above the ablation threshold of F th60 J cm–2 (I th9 GW cm–2). Completely different excisions are produced by the femtosecond-pulse laser: high quality ablations of the Bowman membrane and the stroma tissue characterised by damage zones of less than 0.5 m were observed at all fluences above ablation threshold of F th1 J cm–2 or I th3 TW cm–2 (3×1012 W cm–2). The transparent cornea material can be forced to absorb ultrashort pulses of extremely high intensity. The fs laser generates its own absorption by a multiphoton absorption process. PY - 1994 DO - https://doi.org/10.1007/BF00332446 SN - 0947-8396 VL - 58 IS - 5 SP - 513 EP - 518 PB - Springer CY - Berlin AN - OPUS4-11659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kautek, Wolfgang A1 - Sorg, N. A1 - Krüger, Jörg T1 - Femtosecond pulse laser second harmonic generation on semiconductor electrodes JF - Electrochimica acta KW - Femtosecond pulse laser KW - Second harmonic generation (SHG) KW - Electrochemistry KW - Semiconductor electrode KW - Silicon KW - Silicon oxide KW - Oxide growth PY - 1994 SN - 0013-4686 SN - 1873-3859 VL - 39 IS - 8/9 SP - 1245 EP - 1249 PB - Elsevier Science CY - Kidlington AN - OPUS4-11660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kautek, Wolfgang A1 - Krüger, Jörg ED - Beyer, E. T1 - Femtosecond pulse laser ablation of metallic, semiconducting, ceramic, and biological materials T2 - Laser materials processing N2 - Production of holes and grooves of < 30 micrometers diameter with high aspect ratio value is a delicate task either for mechanical tools, or for conventional nanosecond pulse lasers like e.g. pulsed Nd:YAG or excimer lasers. They later tend to cause microcracks extending from an annular melting zone, or substantial disruption, respectively. Experimental results are presented which demonstrate that the development of intense ultrashort pulse laser systems (>> 1012 W cm-2, (tau) < 1 ps) opens up possibilities for materials processing by cold plasma generation and ablation of metals, semiconductors, ceramics, composites, and biological materials. A femtosecond and a nanosecond dye laser with pulse durations of 300 fs (< 200 (mu) J) and 7 ns (< 10 mJ), and center wavelengths at 612 and 600 nm, respectively, both focused on an area of the order of 10-5 cm2, have been applied either to absorbing substrates, like polycrystalline gold, silicon (111), aluminum nitride ceramics, or transparent materials, like synthetic and human dental hydroxyapatite composites, bone material, and human cornea transplants. The fs-laser generates its own absorption in transparent materials by a multiphoton absorption process, and thus forces the absorption of visible radiation. Because the time is too short (< ps) for significant transport of mass and energy, the beam interaction generally results in the formation of a thin plasma layer of approximately solid state density. Only after the end of the subpicosecond laser pulse, it expands rapidly away from the surface without any light absorption and further plasma heating. Therefore, energy transfer (heat and impulse) to the target material, and thermal and mechanical disruption are minimized. In contrast to heat- affected zones (HAZ's) generated by conventional nanosecond pulse lasers of the order of 1 - 10 micrometers , HAZ's of less than 0.02 micrometers were observed. T2 - Conference on Production Line Processes ; Conference on Process Control and Modeling ; Conference on Novel Applications CY - Vienna, Austria DA - 1994-04-05 PY - 1994 SN - 0-8194-1508-1 DO - https://doi.org/10.1117/12.184768 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 2207 SP - 600 EP - 611 PB - SPIE--the International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-11892 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -