TY - CONF A1 - Krüger, Jörg A1 - Schmidt, Birgit A1 - Pentzien, Simone A1 - Conradi, Andrea T1 - Decontamination of biocidal loaded wooden artworks using femtosecond and nanosecond laser processing N2 - Until the end of the 1980s many wooden artworks underwent surface treatment by liquid preservatives, e.g. Hylotox-59. As a result, DDT (dichlorodiphenyltrichloroethane) crystal structures are formed on the wood surfaces by the "blooming" of chlorine compounds. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Even decades after applying, the toxins in the wood preservatives are still detectable. Contaminated waste wood with natural biocide ageing, gilded and wood carved elements of an old picture frame and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen, Germany. Laser cleaning of areas of some square millimeters on the surfaces of the objects was done by means of femtosecond and nanosecond laser pulses. For 30-fs laser pulses at 800 nm wavelength a line-wise meandering movement of the object under the focused beam was performed. 10-ns laser pulses at 1064 nm and 7-ns laser pulses at 532 nm wavelength were applied to the sample surface using a scanner. Before laser application, a chlorine measurement was done by X-ray fluorescence analysis (XRF) as reference. After laser processing, the XRF analysis was used again at the same surface position to determine chlorine depletion rates of up to 75% (30 fs, 800 nm), 70% (10 ns, 1064 nm), and 22% (7 ns, 532 nm). For the application of 30-fs laser pulses on waste wood, no crystalline DDT residues remain on the sample surface observed utilizing optical microscopy. T2 - European Materials Research Society (EMRS) Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials” CY - Strasbourg, France DA - 22.05.2017 KW - Femtosecond laser KW - Nanosecond laser KW - Laser cleaning KW - DDT KW - Wooden artworks PY - 2017 AN - OPUS4-40410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -