TY - GEN A1 - Krüger, Jörg A1 - Kautek, Wolfgang ED - Dubowski, J. T1 - Femtosecond-pulse laser processing of metallic and semiconducting thin films KW - Femtosekundenpulslaser KW - Pulslaser KW - Dünnschicht, metallisch KW - Dünnschicht, halbleitend KW - Ablation PY - 1995 SN - 0-8194-1750-5 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 2403 SP - 436 EP - 447 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Krüger, Jörg A1 - Kautek, Wolfgang ED - Phipps, C. T1 - Femtosecond laser micromachining of technical materials N2 - Micromachining experiments were performed with Ti:sapphire laser pulses (130 fs - 150 fs, 800 nm, approximately 10 Hz) in air. Employing the direct focusing technique, highly absorbing titanium nitride (TiN) and weakly absorbing polyimide (PI) and polymethylmethacrylate (PMMA) served as target materials. The lateral and vertical precision of the laser ablation and morphological features were characterized by scanning force (SFM), scanning electron (SEM) and optical microscopy. For TiN, incubation can be observed, i.e. the single-pulse surface damage threshold (0.26 J/cm2) is by a factor of two greater than the threshold for 100 pulses. Ablation rates below 10 nm per pulse can be achieved. The evolution of sub-wavelength ripples is presented in dependence on pulse number and laser fluence, respectively. The incubation behavior of the polymers can be described by an accumulation model as for TiN. Experiments on PI with varying focal lengths result in the same modification thresholds. Different polarization states of light (linear, circular) lead to a variation of the ablation rate and to various morphological patterns in the ablation craters (wavelength ripples, cones). Swelling of PMMA occurred at fluences below the ablation threshold. T2 - 3rd SPIE's International Conference on High-Power Laser Ablation CY - Santa Fe, NM, USA DA - 24.04.2000 KW - Ablation KW - Femtosecond pulse laser KW - Laser processing KW - Micromachining KW - Polymer KW - Titanium nitride KW - Ripples PY - 2000 SN - 0-8194-3700-X U6 - https://doi.org/10.1117/12.407346 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 4065 SP - 161 EP - 172 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-967 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Niino, H. T1 - Biomaterial immobilization on polyurethane films by XeCl excimer laser processing N2 - Zusammenfassung The surface chemical modification of polyurethane (PU) films was performed by an UV laser-induced chemical reaction in a polysaccharide solution. This process may be applicable as hydrophilic packaging of implantable medical devices and in vivo sensors. When a PU film in contact with an aqueous alginic acid (AAC) solution was irradiated with a XeCl laser, the PU film turned hydrophilic. Contact angles of water on the film were reduced from 110° to 60°. Since light absorption of the AAC solution at 308 nm was negligibly small, reactive sites were generated solely on the PU surface. There, AAC could be immobilized by chemical bonds thus allowing for a nanometer-scaled grafting of this biomolecule. The mechanism was investigated by surface analyses with Fourier-transform infrared spectroscopy (FT-IR), dye staining, ultraviolet-visible (UV-VIS) spectroscopy, and scanning electron microscopy (SEM) techniques. A one-photon photochemical process could beidentified. PY - 2001 U6 - https://doi.org/10.1007/s003390000617 SN - 0947-8396 VL - 72 IS - 1 SP - 53 EP - 57 PB - Springer CY - Berlin AN - OPUS4-926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Wrobel, J. M. T1 - Femtosecond pulse laser machining of InP wafers N2 - Ablation of indium phosphide wafers in air was performed with 130 fs laser pulses at a wavelength of 800 nm at a low repetition rate of 10 Hz. In order to evaluate the role of the incubation effects, the relationship between the number of laser pulses used for the ablation and the threshold fluence was studied. Particular attention was paid to the chemical composition, surface morphology and structural variations of the ablated area. T2 - 5th Laser Applications in Microelectronics and Optoelectronics Manufacturing Conference (LAMOM) CY - San José, CA, USA DA - 240.01.2000 KW - Femtosecond laser ablation KW - Indium phosphide KW - Auger electron spectroscopy PY - 2000 SN - 0-8194-3550-3 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 3933 SP - 280 EP - 287 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-937 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Jörg A1 - Bonse, Jörn A1 - Baudach, Steffen A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Wrobel, J. M. T1 - Femtosecond-Pulse Laser Machining of Semiconducting Materials N2 - Summary form only given. Machining investigations of crystalline silicon have been performed with laser pulses at a wavelength of 780 nm in the range between 5 fs and 400 fs. Applying 100 pulses per spot, surface damage thresholds were determined by the measurement of the damage diameter. In this pulse duration regime, the threshold fluences were nearly constant. Single-pulse investigations with 5 fs pulses yielded a value of about 0.15 J cm-2 identical to the multi-pulse experiment. This is in contradiction to the behaviour of dielectrics where incubation effects alter the optical properties down to the 5 fs pulse regime. Employing laser pulses with a duration of 130 fs at a wavelength of 800 nm, single-pulse ablation thresholds of 0.23 J cm-2 and 0.16 J cm-2 were determined for Si and InP in air, respectively. The threshold fluence was calculated from the linear relation between the square of the diameters versus the logarithm of the laser fluences. T2 - CLEO/Europe 2000 ; Conference on Lasers and Electro-Optics Europe ; Conférence Européenne sur les Lasers et l'Electro-Optique ; CLEO/Europe-IQEC CY - Nice, France DA - 2000-09-10 PY - 2000 SN - 0-7803-6319-1 U6 - https://doi.org/10.1109/CLEOE.2000.910410 PB - IEEE Service Center CY - Piscataway, NJ AN - OPUS4-958 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kautek, Wolfgang A1 - Martin, Sven A1 - Krüger, Jörg A1 - Lenzner, Matthias A1 - Fiedler, A. ED - Meunier, M. T1 - Femtosecond laser multi-pulse interaction with optical filters and fabrics N2 - Optical filters and fabrics are important parts of laser safety equipment such as goggles and curtains. A choice of these materials with varying absorption spectra is investigated with respect to their resistance to Ti:sapphire femtosecond laser radiation (800 nm wavelength, 1 kHz repetition rate). Pulse durations down to 30 fs and multiple-pulse irradiation conditions are employed to evaluate technically relevant damage thresholds. The ablation threshold fluences of the absorbing filters are comparable to those observed for transparent materials with 30-fs-pulses. These investigations together with scanning electron microscopy of the surface morphology after laser treatment provide insight into the interaction mechanism of the short pulses with the materials. T2 - Symposium D - European Materials Research Society CY - Strasbourg, France DA - 2002-06-18 PY - 2002 UR - http://www.emrs-strasbourg.com/files/pdf/2002_SPRING/02_Prog_Dv2.pdf N1 - Serientitel: Applied surface science – Series title: Applied surface science VL - 208/209.2003,1 IS - 1 SP - 1(?) PB - Elsevier CY - Amsterdam AN - OPUS4-1730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kautek, Wolfgang A1 - Daminelli-Widany, Grazia A1 - Krüger, Jörg ED - Meunier, M. T1 - Ultrashort pulse laser interaction with anodic metal oxide layers in electrolyte contact N2 - The removal and accelerated corrosion monitoring of metal coating systems is of general interest in materials science and engineering technology. The femtosecond and nanosecond laser ablation and delamination at 800 nm and 532 nm, respectively, of anodic oxide layers on aluminium alloys in electrolyte contact were investigated. Laser-induced modifications of the oxide layer resulted in an ionic contact between electrolyte and metal, which produced a current transient and thus allowed the in-situ electrochemical monitoring of the modification. Oxide coatings with different optical properties, almost transparent and opaque, were examined. The transparent anodic oxides showed contrasting ablation mechanisms in the nanosecond and femtosecond pulse duration regime: nanosecond pulses caused spallation, whereas femtosecond treatment led to ablation. Current signals measured in the transparent film were consistent with light absorption below the metal-oxide interface and with film spallation. Irradiation of the opaque coating yielded ionic current transients within the so-called shock-affected-zone of the oxide layer. This investigation provided insight into the role of the penetration depth of light and the heat-affected zone, the extent of the shock-affected zone, and the defect formation in the coating and at the solid-solid interface between metal and oxide. T2 - Symposium D - European Materials Research Society CY - Strasbourg, France DA - 2002-06-18 PY - 2002 UR - http://www.emrs-strasbourg.com/files/pdf/2002_SPRING/02_Prog_Dv2.pdf N1 - Serientitel: Applied surface science – Series title: Applied surface science VL - 208/209.2003,1 IS - 1 SP - 1(?) PB - Elsevier CY - Amsterdam AN - OPUS4-1731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bonse, Jörn A1 - Rudolph, Pascale A1 - Krüger, Jörg A1 - Baudach, Steffen A1 - Kautek, Wolfgang T1 - Femtosecond pulse laser processing of TiN on silicon N2 - Ultrashort pulse laser microstructuring (pulse duration 130 fs, wavelength 800 nm, repetition rate 2 Hz) of titanium nitride (TiN) films on silicon substrates was performed in air using the direct focusing technique. The lateral and vertical precision of laser ablation was evaluated. The TiN ablation threshold changed with the number of pulses applied to the surface due to an incubation effect. An ablation depth per pulse below the penetration depth of light was observed. Columnar structures were formed in the silicon substrate after drilling through the TiN layer. KW - Femtosecond laser ablation KW - Titanium nitride KW - Silicon KW - Optical properties PY - 2000 U6 - https://doi.org/10.1016/S0169-4332(99)00481-X SN - 0169-4332 SN - 1873-5584 VL - 154-155 SP - 659 EP - 663 PB - North-Holland CY - Amsterdam AN - OPUS4-802 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Baudach, Steffen A1 - Bonse, Jörn A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Ultrashort pulse laser ablation of polycarbonate and polymethylmethacrylate N2 - Ablation experiments with ultrashort laser pulses (pulse duration 150 fs, wavelength 800 nm) on polymers (PC, PMMA) relevant for biomedical technology have been performed in air. The lateral and vertical machining precision was evaluated by optical, atomic force and scanning electron microscopy. The ablation threshold reaches values in the range of 0.5–2.5 J/cm2 and depends significantly on the number of laser pulses applied to the same spot. The hole diameters are influenced by the laser fluence and the number of laser pulses. The relation between the ablation threshold and the number of laser pulses applied to the same spot is described in accordance with an incubation model. KW - Femtosecond laser ablation KW - Polymer KW - Polycarbonate KW - Polymethylmethacrylate PY - 2000 U6 - https://doi.org/10.1016/S0169-4332(99)00474-2 SN - 0169-4332 SN - 1873-5584 VL - 154-155 SP - 555 EP - 560 PB - North-Holland CY - Amsterdam AN - OPUS4-803 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Sartania, S. A1 - Spielmann, Ch. A1 - Krausz, F. T1 - Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps KW - Laser micromachining KW - Subpicosecond laser ablation KW - Barium aluminium borosilicate glass PY - 1998 SN - 0169-4332 SN - 1873-5584 IS - 127-129 SP - 892 EP - 898 PB - North-Holland CY - Amsterdam AN - OPUS4-887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -