TY - JOUR A1 - Mann, Guido A1 - Pentzien, Simone A1 - Krüger, Jörg T1 - Beam diameter dependence of surface damage threshold of fused silica fibers and preforms for nanosecond laser treatment at 1064 nm wavelength JF - Applied surface science N2 - Optical fibers made of fused silica are a common method of transmitting high laser pulse energies. Failure of those fibers is a significant risk. The determination of laser-induced damage thresholds (LIDT) on fiber end facets according to ISO 21254 standard is needed. In the past, single pulse nanosecond laser experiments showed an improvement of LIDT with increasing fiber core diameter for 1064 nm wavelength and a constant beam diameter of 50 µm. This paper pays particular attention to the influence of the laser beam diameter on damage resistance. All-silica fiber types (LEONI) with different core diameters (100–600 µm) were investigated using beam diameters in a range from 30 µm to 100 µm. For comparison experiments on fused silica preform material (Heraeus F300) were performed. On one hand, surface LIDT of fused silica preform material decreases significantly with increasing beam size. A model considering a random distribution of point defects explains the experimental data qualitatively. On the other hand, LIDT of fiber end facets stays constant. White light microscopy results suggest that the point defect density on fiber end facets is lower compared to the preform surface due to an excellent surface polish quality. KW - Laser-induced damage threshold KW - Nanosecond laser KW - Optical fiber KW - Fused silica KW - Spot size KW - Defect model PY - 2013 DO - https://doi.org/10.1016/j.apsusc.2013.03.088 SN - 0169-4332 SN - 1873-5584 VL - 276 SP - 312 EP - 316 PB - Elsevier B.V. CY - Amsterdam AN - OPUS4-28310 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotsifaki, D.G. A1 - Zekou, L. A1 - Pentzien, Simone A1 - Krüger, Jörg A1 - Serafetinides, A.A. ED - Saunders, D. ED - Strlic, M. ED - Korenberg, C. ED - Luxford, N. ED - Birkhölzer, K. T1 - Cleaning of artificially soiled papers by infrared and mid-infrared lasers T2 - LACONA IX - Lasers in the conservation of artworks (Proceedings) N2 - One of the most important materials presenting and witnessing human culture is paper. The cleaning of paper is often necessary because contamination must be removed so that the fragile organic substrate can be preserved. The conventional cleaning methods are mechanical or involve the application of chemicals. These methods can damage drawings or print layers to some extent or make the original paper substrate brittle. More specifically, the use of a scalpel blade can cause damage to fibers. Chemical cleaning is difficult to perform locally, can dissolve foreign matter that then migrates into the paper substrate, or involves volatile organic compounds that can be harmful to the conservator. There is, therefore, a need for new conservation technologies aimed at the safe cleaning of paper. Lasers have proved to be an appropriate tool for cleaning as the energy dose and penetration depth at the specific point of contamination can be controlled. Additionally, if used properly, laser cleaning is not destructive to the paper. T2 - LACONA IX - Lasers in the conservation of artworks CY - London, UK DA - 07.09.2011 KW - Laser cleaning KW - Paper KW - Artificial soiling KW - Nanosecond laser KW - Microsecond laser PY - 2013 SN - 978-1-904982-87-6 SP - 219 EP - 221 PB - Archetype publications Ltd. AN - OPUS4-27956 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - High performance fibers at the limit JF - Laser + Photonik N2 - Because of the increasingly stringent requirements for fibers in high Performance applications, the Business Unit Fiber Optics of the Leoni Group and the German BAM Federal Institute for Materials Research and Testing are jointly tackling the challenge of investigating the damage thresholds of selected large core special fibers for the first time. KW - Laser-induced damage threshold KW - Optical multimode fiber KW - Nanosecond laser PY - 2013 SN - 1610-3521 IS - Laser+Photonics Exportausgabe 2013 SP - 20 EP - 23 PB - Hanser CY - München AN - OPUS4-27679 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mann, Guido A1 - Jurke, Mathias A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - Influence of mechanical stress on nanosecond laser-induced damage threshold of fused silica JF - Applied surface science N2 - Optical multimode fibers made of fused silica are widely used for transmission of high power laser pulses. Bending of fibers creates mechanical stress inside the material. The bend stress of a fiber can be calculated from bend radius, geometrical fiber parameters and Young's Modulus of the fiber core material and reaches typically values of 220 MPa. A thermo-elastic model of Kusov et al. predicts a quadratic dependence of laser-induced damage threshold fluence with applied stress. In the present study, fiber preform material F300 (Heraeus) was loaded mechanically with pressures up to 220 MPa representing 20% of the pressure resistance of fused silica. Bulk laser-induced damage thresholds (LIDT) were evaluated using a longitudinal multimode Q-switched Nd:YAG laser (1064 nm) at a pulse duration of 12 ns with polarization states parallel and perpendicular to the stress direction. LIDT of fused silica samples of about 700 J/cm2 were found. LIDT did not show a dependence on mechanical pressure and polarization state which is a consequence of the small ratio of maximum applied stress (220 MPa) to Young's Modulus of fused silica (72.5 GPa). KW - Laser-induced damage threshold KW - LIDT KW - Nanosecond laser KW - Fused silica KW - Mechanical stress KW - Optical fiber PY - 2012 DO - https://doi.org/10.1016/j.apsusc.2012.01.049 SN - 0169-4332 SN - 1873-5584 VL - 258 IS - 23 SP - 9153 EP - 9156 PB - North-Holland CY - Amsterdam AN - OPUS4-26225 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Eberstein, Markus A1 - Zoheidi, M. A1 - Vogel, Jens A1 - Mann, Guido A1 - Krüger, Jörg ED - Wolf, Jonas C. ED - Luka Lange, T1 - Influence of fictive temperature on laser-induced damage of silica glass T2 - Glass Materials Research Progress KW - Silica glass KW - Fictive temperature KW - Multimode fiber KW - Nanosecond laser KW - Damage threshold PY - 2008 SN - 978-1-60456-578-2 IS - Chapter 10 SP - 275 EP - 286 PB - Nova Science Publishers, Inc. CY - New York, USA AN - OPUS4-17903 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eberstein, Markus A1 - Mann, Guido A1 - Vogel, Jens A1 - Zoheidi, M. A1 - Krüger, Jörg T1 - Influence of Technological Parameters on Nanosecond Laser-induced Surface Damage of Optical Multimode Fibers JF - Advanced materials research N2 - High-power optical multimode fibers are essential components for materials processing and surgery and can limit the reliability of expensive systems due to breakdown at the end faces. The breakdown threshold of fibers is determined by intrinsic materials properties and parameters of the technology applied. The aim of this paper is the identification of technological parameters that are crucial for the fiber quality. Fibers were drawn from preforms of Heraeus SWU with core material F300 and a low amount of OH-. Both, the cladding (fluorine doped SiO2) to core diameter ratio (CCDR) and the drawing speed were varied. CCDR values between 1.05 and 1.4 were used. Afterwards, the laser-induced damage thresholds (LIDT) of the fibers were determined. For comparison, also samples from preforms, which underwent different thermal treatments above the transition temperature, were tested with respect to their damage resistivity. Single and multi pulse LIDT measurements were done in accordance with the relevant ISO standards. Nd:YAG laser pulses with durations of 15 ns (1064 nm wavelength) and 8.5 ns (532 nm) at a repetition rate of 10 Hz were utilized. For the fibers, LIDT values (1-on-1, 1064 nm and 532 nm) increased with growing CCDR and with decreasing drawing velocities. KW - Silica glass KW - Multimode fiber KW - Nanosecond laser KW - Damage threshold PY - 2005 SN - 1022-6680 SN - 1662-8985 VL - 39-40 SP - 225 EP - 230 PB - Trans Tech Publ. CY - Zurich AN - OPUS4-17339 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Koter, Robert A1 - Krüger, Jörg ED - Engel, P. ED - Schirò, J. ED - Larsen, R. ED - Moussakova, E. ED - Kecskeméti, I. T1 - Cleaning of soiled paper model samples using short and ultrashort laser pulses T2 - Conference 'New Approaches to Book and Paper Conservation - Restoration' (Proceedings) N2 - Paper is one of the most important materials representing and witnessing human culture particularly as a carrier medium for text and image. As soiling hampers the reception of information, paper cleaning techniques are needed. Traditional mechanical and chemical cleaning methods are used by conservator-restorers. In some cases, a classical cleaning procedure of paper objects yields unsatisfactory results or a conventional treatment is even impossible. Especially, fragile paper objects cause problems due to mechanical instabilities. Laser cleaning as a non-contact method might be a way to overcome some of the limitations of classical cleaning techniques. Laser parameters have to be chosen to achieve removal of the soiling without influencing the artwork. Any immediate as well as long-term effects causing an irreversible change of the artwork have to be avoided. At present, most laser applications are found in stone and metal conservation, while laser treatment of complex organic materials like paper is still not fully developed for application in conservators' workshops. This contribution describes recent work of pulsed laser cleaning of soiled model samples. Pure cellulose, rag paper and wood-pulp paper were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples representing essential characteristics of contaminated real-world artworks. Afterwards, model samples were cleaned using short and ultrashort laser pulses in the nanosecond and femtosecond time domain, respectively. An extensive analysis of the model samples after laser treatment using an optical microscope and a multi-spectral imaging system allows a comparison of the cleaning results obtained with both laser sources. T2 - Conference 'New Approaches to Book and Paper Conservation - Restoration' CY - Horn, Austria DA - 09.05.2011 KW - Laser cleaning KW - Ablation KW - Laser impact on surfaces KW - Paper KW - Femtosecond laser KW - Nanosecond laser PY - 2011 SN - 978-3-85028-518-6 SP - 519 EP - 532 PB - Verlag Berger, Horn CY - Vienna, Austria AN - OPUS4-23705 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Krüger, Jörg A1 - Schmidt, Birgit A1 - Pentzien, Simone A1 - Conradi, Andrea T1 - Decontamination of biocidal loaded wooden artworks using femtosecond and nanosecond laser processing N2 - Until the end of the 1980s many wooden artworks underwent surface treatment by liquid preservatives, e.g. Hylotox-59. As a result, DDT (dichlorodiphenyltrichloroethane) crystal structures are formed on the wood surfaces by the "blooming" of chlorine compounds. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Even decades after applying, the toxins in the wood preservatives are still detectable. Contaminated waste wood with natural biocide ageing, gilded and wood carved elements of an old picture frame and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen, Germany. Laser cleaning of areas of some square millimeters on the surfaces of the objects was done by means of femtosecond and nanosecond laser pulses. For 30-fs laser pulses at 800 nm wavelength a line-wise meandering movement of the object under the focused beam was performed. 10-ns laser pulses at 1064 nm and 7-ns laser pulses at 532 nm wavelength were applied to the sample surface using a scanner. Before laser application, a chlorine measurement was done by X-ray fluorescence analysis (XRF) as reference. After laser processing, the XRF analysis was used again at the same surface position to determine chlorine depletion rates of up to 75% (30 fs, 800 nm), 70% (10 ns, 1064 nm), and 22% (7 ns, 532 nm). For the application of 30-fs laser pulses on waste wood, no crystalline DDT residues remain on the sample surface observed utilizing optical microscopy. T2 - European Materials Research Society (EMRS) Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials” CY - Strasbourg, France DA - 22.05.2017 KW - Femtosecond laser KW - Nanosecond laser KW - Laser cleaning KW - DDT KW - Wooden artworks PY - 2017 AN - OPUS4-40410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -