TY - JOUR A1 - Wurster, R. A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - Characterization of laser-generated microparticles by means of a dust monitor and SEM imaging JF - Laser chemistry N2 - Nanosecond laser (1064 nm wavelength) cleaning of artificially soiled paper as a model sample simulating a real-world artwork was performed. During the cleaning process, the ejection of particles was monitored in situ by means of a dust monitor (8 size classes, ranging from 0.3 µm to >2 µm) and ex situ using a mini-cascade impactor (MKI, 5 stages). The cleaning result was analyzed by scanning electron microscopy (SEM) considering possible laser-induced damages to the substrate. Size distributions of emitted particles were measured depending on the processing parameters: laser fluence, F, and pulse number per spot, N. High numbers of large (>2 µm) particles were collected by the mini-cascade impactor indicating a gas dynamical liftoff process. Obviously, these particles were not affected by the laser-matter interaction. The different methods (SEM, MKI, and dust monitor) are compared with respect to their usefulness for a proper interpretation of the cleaning results. PY - 2006 DO - https://doi.org/10.1155/2006/31862 SN - 0278-6273 SN - 1476-3516 VL - 2006 IS - Article ID 31862 SP - 1 EP - 5(?) PB - Harwood Academic Publ. CY - London AN - OPUS4-14467 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CHAP A1 - Schmidt, Birgit A1 - Koch, W. A1 - Pentzien, Simone A1 - Krüger, Jörg ED - Gabsch, T. T1 - Der Einsatz von Lasertechnik an Modellsystemen zentralasiatischer Wandmalereifragmente T2 - Auf Grünwedels Spuren: Restaurierung und Forschung an zentralasiatischen Wandmalereien KW - Laserreinigung KW - Wandmalerei KW - Verrußung KW - Kunststoffschicht KW - Probekörper PY - 2012 SN - 978-3-7338-0385-8 IS - Kap. 10 SP - 152 EP - 157 PB - Koehler & Amelang GmbH AN - OPUS4-26178 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Ziemann, M. A A1 - Pentzien, Simone A1 - Gabsch, T. A1 - Koch, W. A1 - Krüger, Jörg T1 - Technical analysis of a Central Asian wall painting detached from a Buddhist cave temple on the northern Silk Road JF - Studies in Conservation N2 - A great number of Central Asian wall paintings, archeological materials, architectural fragments, and textiles, as well as painting fragments on silk and paper, make up the so called Turfan Collection at the Asian Art Museum in Berlin. The largest part of the collection comes from the Kucha region, a very important cultural center in the third to ninth centuries. Between 1902 and 1914, four German expeditions traveled along the northern Silk Road. During these expeditions, wall paintings were detached from their original settings in Buddhist cave complexes. This paper reports a technical study of a wall painting, existing in eight fragments, from the Buddhist cave no. 40 (Ritterhöhle). Its original painted surface is soot blackened and largely illegible. Grünwedel, leader of the first and third expeditions, described the almost complete destruction of the rediscovered temple complex and evidence of fire damage. The aim of this case study is to identify the materials used for the wall paintings. Furthermore, soot deposits as well as materials from conservation interventions were of interest. Non-invasive analyses were preferred but a limited number of samples were taken to provide more precise information on the painting technique. By employing optical and scanning electron microscopy, energy dispersive X-ray spectroscopy, micro X-ray fluorescence spectroscopy, X-ray diffraction analysis, and Raman spectroscopy, a layer sequence of earthen render, a ground layer made of gypsum, and a paint layer containing a variety of inorganic pigments were identified. KW - Wall paintings KW - Central Asia KW - Silk Road KW - Pigments KW - Microscopy PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-357297 DO - https://doi.org/10.1179/2047058414Y.0000000152 VL - 61 IS - 2 SP - 113 EP - 122 PB - Routledge Taylor & Francis Group CY - London AN - OPUS4-35729 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Roth, C. A1 - Beier, O. A1 - Hartmann, A. A1 - Grünler, B. T1 - Decontamination of biocidal loaded wooden artworks by means of laser and plasma processing T2 - Proceedings of the International Conference LACONA XI N2 - Many wooden artworks are contaminated by DDT (dichlorodiphenyltrichloroethane) as a result of a surface treatment by means of the liquid preservative Hylotox-59©. It was used until the end of the 1980s. DDT crystal structures are formed on the wood surfaces by the "blooming" of chlorine compounds. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Even decades after applying, the toxins in the wood preservatives are still detectable because they are of low volatility in many wood samples. Contaminated waste wood with natural biocide ageing, gilded and wood carved elements of an old picture frame and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen. Non-contact procedures using laser and plasma appear reasonable to remove the DDT crystals. During the experiments, health and safety issues for the operator have to be taken into account. The removal of DDT was evaluated employing femtosecond and nanosecond laser radiation and cold atmospheric plasma techniques with different working gases (air, nitrogen, and argon). Before laser application, a chlorine measurement representing the DDT density on the wooden surface is done by X-ray fluorescence (XRF) analysis as reference. After laser processing, the XRF analysis is used again at the same surface position to determine the depletion rate. Additionally, a documentation and characterization of the sample surface is performed before and after laser and plasma treatment using optical microscopy (OM). For plasma processing with various systems a chlorine measurement is done by gas chromatographic-mass spectrometry (GCMS) analysis. T2 - 11th Conference on Lasers in the Conservation of Artworks CY - Kraków, Poland DA - 20.09.2016 KW - Decontamination KW - DDT KW - Wooden artworks KW - Femtosecond laser KW - Cold atmospheric pressure plasma PY - 2017 SN - 978-83-231-3875-4 DO - https://doi.org/10.12775/3875-4.17 SP - 241 EP - 251 PB - NCU Press CY - Toruń AN - OPUS4-43526 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmidt, Birgit Angelika A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg T1 - Femtosecond and nanosecond laser decontaminations of biocidal-loaded wooden artworks JF - Applied Physics A N2 - Until the end of the 1980s many wooden artworks underwent surface treatment by liquid preservatives, e.g. Hylotox-59. DDT (dichlorodiphenyltrichloroethane) crystal structures are formed on the wooden surfaces by the "blooming" of chlorine compounds by time. In addition to an aesthetic disturbance, it is assumed that DDT represents a health risk. Therefore, the removal of DDT crystals from the surfaces is requested. Contaminated wood with natural biocide ageing, gilded and wood carved elements and wooden samples with paint layers were provided by the Schlossmuseum Sondershausen, Germany. Laser cleaning on selected surface areas on the objects was done by means of femtosecond and nanosecond laser pulses. For the same object, cleaning results using 30-fs laser pulses at 800 nm wavelength are compared to findings utilizing 10-ns laser pulses at 1064 nm wavelength. Before and after laser treatment, chlorine measurements at the same surface position were done by X-ray fluorescence analysis (XRF) as an indicator for the presence of DDT. In this way, pointwise chlorine depletion rates can be obtained for the different pulse duration regimes and wavelengths. Additionally, the object surfaces were examined using optical microscopy and multi spectral imaging analysis. T2 - EMRS Spring Meeting 2017, Symposium X “New frontiers in laser interaction: from hard coatings to smart materials" CY - Strasbourg, France DA - 22.05.2017 KW - Laser cleaning KW - Decontamination KW - Wood KW - DDT KW - Femtosecond laser PY - 2017 DO - https://doi.org/10.1007/s00339-017-1316-4 SN - 0947-8396 SN - 1432-0630 VL - 123 IS - 11 SP - Article 696, 1 EP - 9 PB - Springer AN - OPUS4-42564 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Rudolph, Pascale A1 - Pentzien, Simone A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - König, E. T1 - Laserreinigung von Pergament und Papier JF - Restauro PY - 1998 SN - 0933-4017 IS - 6 SP - 396 EP - 402 PB - Callwey CY - München AN - OPUS4-11598 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Pentzien, Simone A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Krüger, Jörg A1 - Kleber, F. A1 - Hollaus, F. A1 - Diem, M. A1 - Sablatnig, R. ED - Park, J.-I. ED - Kim, J. T1 - Can Modern Technologies Defeat Nazi Censorship? T2 - ACCV 2012 Workshops, 11th Asian conference on computer vision N2 - Censorship of parts of written text was and is a common practice in totalitarian regimes. It is used to destroy information not approved by the political power. Recovering the censored text is of interest for historical studies of the text. This paper raises the question, whether a censored postcard from 1942 can be made legible by applying multispectral imaging in combination with laser cleaning. In the fields of art conservation (e.g. color measurements), investigation (e.g. Analysis of underdrawings in paintings), and historical document analysis, multispectral imaging techniques have been applied successfully to give visibility to information hidden to the human eye. The basic principle of laser cleaning is to transfer laser pulse energy to a contamination layer by an absorption process that leads to heating and evaporation of the layer. Partial laser cleaning of postcards is possible; dirt on the surface can be removed and the obscured pictures and writings made visible again. We applied both techniques to the postcard. The text could not be restored since the original ink seems to have suffered severe chemical damage. T2 - ACCV 2012 Workshops, 11th Asian conference on computer vision CY - Daejeon, Korea DA - 05.11.2012 KW - Laser cleaning KW - Multispectral imaging KW - Image restoration KW - Image enhancement PY - 2013 SN - 978-3-642-37483-8 SN - 0302-9743 VL - II IS - LNCS 7729 SP - 13 EP - 24 PB - Springer CY - Berlin Heidelberg AN - OPUS4-28160 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pentzien, Simone A1 - Rabin, Ira A1 - Hahn, Oliver A1 - Krüger, Jörg A1 - Kleber, F. A1 - Hollaus, F. A1 - Diem, M. A1 - Sablatnig, R. T1 - Can modern technologies defeat nazi censorship? JF - ACM journal on computing and cultural heritage KW - Laser cleaning KW - Multispectral imaging KW - Image enhancement KW - Ancient manuscripts KW - Image restoration PY - 2010 SN - 1556-4673 VL - 2 IS - 3, Article 1 SP - 1 EP - 16 PB - Association for Computing Machinery CY - New York, NY, USA AN - OPUS4-25651 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Lussky, K. A1 - Engel, P. A1 - Krüger, Jörg ED - Engel, Patricia T1 - Laser cleaning of artificially soiled paper T2 - Research in book and paper conservation in Europe - a state of the art N2 - Laser cleaning for works of art on paper might be a supplemental, noncontact method to overcome some of the limitations of traditional dry cleaning techniques. Three different types of paper (pure-cellulose filter paper, rag paper, and wood-pulp paper) were mechanically soiled with pulverized charcoal in a standardized procedure to make model samples. These samples were characterized microscopically and by means of lightness measurements using a multi-spectral imaging system. A prototype laser workstation with Laser Class I conditions for the operator was used for the cleaning experiments. For 10-ns laser pulses at a wavelength of 532 nm, a set of laser parameters was established for a successful cleaning of the samples avoiding damage to the paper substrate. Single- and multi-pulse illumination conditions were tested. An extensive microscopic analysis after laser treatment of the cleaned parts of the samples provided insight into the remaining soiling on the surface and in the bulk of the paper material. PY - 2009 SN - 978-3-85028-490-5 SP - 171 EP - 188 PB - Berger Horn CY - Wien, Austria AN - OPUS4-20398 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Pentzien, Simone A1 - Conradi, Andrea A1 - Krüger, Jörg A1 - Wurster, R. ED - M. Castillejo, ED - P. Moreno, ED - M. Oujja, ED - R. Radvan, ED - J. Ruiz, T1 - Monitoring of the laser cleaning process of artificially soiled paper T2 - LACONA VII International Conference, "Lasers in the Conservation of Artworks", September 17-21, 2007, Madrid, Spain (Proceedings) N2 - Laser cleaning of soiled paper is a challenging task due to the fact that a contamination has to be removed and a fragile organic material has to be preserved. The ejection of particles forms a significant channel for the removal of unwanted surface contaminations and can be exploited for an in-situ monitoring of the cleaning procedure. 532-nm-nanosecond single and multi pulse laser cleaning of artificially soiled Whatman© paper was performed. Particles were registered with a dust monitor. These in-situ experiments were combined with ex-situ investigations of cleaning and substrate damage thresholds by means of light and scanning electron microscopic techniques. The cleaning efficiency measured by a multi-spectral imaging system was compared to the in-situ particle monitoring. Additionally, possible color changes of the paper substrate were evaluated. T2 - LACONA VII International Conference, "Lasers in the Conservation of Artworks" CY - Madrid, Spain DA - 2007-09-17 PY - 2008 SN - 978-0-415-47596-9 SP - 345 EP - 351 PB - Taylor & Francis AN - OPUS4-17974 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -