TY - GEN A1 - Krüger, Jörg A1 - Kautek, Wolfgang ED - Dubowski, J. T1 - Femtosecond-pulse laser processing of metallic and semiconducting thin films KW - Femtosekundenpulslaser KW - Pulslaser KW - Dünnschicht, metallisch KW - Dünnschicht, halbleitend KW - Ablation PY - 1995 SN - 0-8194-1750-5 SN - 1605-7422 N1 - Serientitel: SPIE proceedings series – Series title: SPIE proceedings series IS - 2403 SP - 436 EP - 447 PB - SPIE CY - Bellingham, Wash. AN - OPUS4-637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Niino, H. T1 - Biomaterial immobilization on polyurethane films by XeCl excimer laser processing N2 - Zusammenfassung The surface chemical modification of polyurethane (PU) films was performed by an UV laser-induced chemical reaction in a polysaccharide solution. This process may be applicable as hydrophilic packaging of implantable medical devices and in vivo sensors. When a PU film in contact with an aqueous alginic acid (AAC) solution was irradiated with a XeCl laser, the PU film turned hydrophilic. Contact angles of water on the film were reduced from 110° to 60°. Since light absorption of the AAC solution at 308 nm was negligibly small, reactive sites were generated solely on the PU surface. There, AAC could be immobilized by chemical bonds thus allowing for a nanometer-scaled grafting of this biomolecule. The mechanism was investigated by surface analyses with Fourier-transform infrared spectroscopy (FT-IR), dye staining, ultraviolet-visible (UV-VIS) spectroscopy, and scanning electron microscopy (SEM) techniques. A one-photon photochemical process could beidentified. PY - 2001 DO - https://doi.org/10.1007/s003390000617 SN - 0947-8396 VL - 72 IS - 1 SP - 53 EP - 57 PB - Springer CY - Berlin AN - OPUS4-926 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kautek, Wolfgang A1 - Martin, Sven A1 - Krüger, Jörg A1 - Lenzner, Matthias A1 - Fiedler, A. ED - Meunier, M. T1 - Femtosecond laser multi-pulse interaction with optical filters and fabrics N2 - Optical filters and fabrics are important parts of laser safety equipment such as goggles and curtains. A choice of these materials with varying absorption spectra is investigated with respect to their resistance to Ti:sapphire femtosecond laser radiation (800 nm wavelength, 1 kHz repetition rate). Pulse durations down to 30 fs and multiple-pulse irradiation conditions are employed to evaluate technically relevant damage thresholds. The ablation threshold fluences of the absorbing filters are comparable to those observed for transparent materials with 30-fs-pulses. These investigations together with scanning electron microscopy of the surface morphology after laser treatment provide insight into the interaction mechanism of the short pulses with the materials. T2 - Symposium D - European Materials Research Society CY - Strasbourg, France DA - 2002-06-18 PY - 2002 UR - http://www.emrs-strasbourg.com/files/pdf/2002_SPRING/02_Prog_Dv2.pdf N1 - Serientitel: Applied surface science – Series title: Applied surface science VL - 208/209.2003,1 IS - 1 SP - 1(?) PB - Elsevier CY - Amsterdam AN - OPUS4-1730 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kautek, Wolfgang A1 - Daminelli-Widany, Grazia A1 - Krüger, Jörg ED - Meunier, M. T1 - Ultrashort pulse laser interaction with anodic metal oxide layers in electrolyte contact N2 - The removal and accelerated corrosion monitoring of metal coating systems is of general interest in materials science and engineering technology. The femtosecond and nanosecond laser ablation and delamination at 800 nm and 532 nm, respectively, of anodic oxide layers on aluminium alloys in electrolyte contact were investigated. Laser-induced modifications of the oxide layer resulted in an ionic contact between electrolyte and metal, which produced a current transient and thus allowed the in-situ electrochemical monitoring of the modification. Oxide coatings with different optical properties, almost transparent and opaque, were examined. The transparent anodic oxides showed contrasting ablation mechanisms in the nanosecond and femtosecond pulse duration regime: nanosecond pulses caused spallation, whereas femtosecond treatment led to ablation. Current signals measured in the transparent film were consistent with light absorption below the metal-oxide interface and with film spallation. Irradiation of the opaque coating yielded ionic current transients within the so-called shock-affected-zone of the oxide layer. This investigation provided insight into the role of the penetration depth of light and the heat-affected zone, the extent of the shock-affected zone, and the defect formation in the coating and at the solid-solid interface between metal and oxide. T2 - Symposium D - European Materials Research Society CY - Strasbourg, France DA - 2002-06-18 PY - 2002 UR - http://www.emrs-strasbourg.com/files/pdf/2002_SPRING/02_Prog_Dv2.pdf N1 - Serientitel: Applied surface science – Series title: Applied surface science VL - 208/209.2003,1 IS - 1 SP - 1(?) PB - Elsevier CY - Amsterdam AN - OPUS4-1731 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Sartania, S. A1 - Spielmann, Ch. A1 - Krausz, F. T1 - Laser micromachining of barium aluminium borosilicate glass with pulse durations between 20 fs and 3 ps KW - Laser micromachining KW - Subpicosecond laser ablation KW - Barium aluminium borosilicate glass PY - 1998 SN - 0169-4332 SN - 1873-5584 IS - 127-129 SP - 892 EP - 898 PB - North-Holland CY - Amsterdam AN - OPUS4-887 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - The Femtosecond Pulse Laser: a New Tool for Micromachining KW - Femtosekundenlaser KW - Mikrobearbeitung PY - 1999 SN - 1054-660X SN - 1531-8494 IS - 9,1 SP - 30 EP - 40 PB - MAIK Nauka/Interperiodica Publ. CY - Moscow AN - OPUS4-712 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Lenzner, M. A1 - Krausz, F. T1 - Precision laser ablation of dielectrics in the 10-fs regime N2 - Zusammenfassung Laser pulses in the 10-fs domain provide a quality of micromachining of fused silica and borosilicate glass that is unobtainable with longer pulses in the range of several 100 femtoseconds up to picoseconds. The shortening of the pulses reduces the statistical behavior of the material removal and the ablation process thus attains a more deterministic and reproducible character. The improved reproducibility of ablation is accompanied by significantly smoother morphology. This offers the potential for lateral and vertical machining precision of the order of 100 nm and 10 nm, respectively. KW - Laser ablation PY - 1999 DO - https://doi.org/10.1007/s003390050906 SN - 0947-8396 VL - 68 IS - 3 SP - 369 EP - 371 PB - Springer CY - Berlin AN - OPUS4-825 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krüger, Jörg A1 - Kautek, Wolfgang A1 - Krivenko, A.G. A1 - Benderskii, V.A. T1 - Gigantic Hydrogen-Ion Discharge Currents Initiated by a Subpicosecond Laser PY - 1998 SN - 0038-5387 SN - 1023-1935 VL - 34 IS - 10 SP - 1068 EP - 1075 PB - MAIK Nauka/Interperiodica Publ. CY - Moscow AN - OPUS4-826 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Rudolph, Pascale A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Mikrostrukturierung von Glas zur Erzeugung kristalliner Si-Schichten PY - 2000 IS - 12 SP - 7 EP - 36 PB - VDI-Verl. CY - Düsseldorf AN - OPUS4-985 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Krüger, Jörg A1 - Kautek, Wolfgang T1 - Ultrashort Pulse Laser Interaction with Dielectrics and Polymers N2 - Abstract Femtosecond laser micromachining has excited vivid attention in various industri- al fields and in medicine owing to the advantages of ultrashort laser pulses compared to long-pulse treatment.These are mainly the reduction of the laser fluence needed to induce ablation and the improvement of the contour sharpness of the laser-generated structures. Recently,special attention was paid to femtosecond laser experiments on nonabsorbing in- organic dielectrics.This is due to the fact that optical damage in dielectric optical elements limits the performance of high-power laser systems.Despite the fact that a large variety of organic polymers can be machined with excimer lasers successfully,the involvement of thermal processes can lead to an unsatisfactory quality of the structures.Ultrashort,fs-laser pulses might be an alternative for the treatment of polymers.Therefore,femtosecond laser machining investigations of dielectrics and polymers are reviewed in this paper.Similarities and differences of the ablation behavior of both material classes are discussed.The influ- ence of the bandgap on the ablation threshold in dependence on the pulse duration,the en- hancement of the machining precision with a shortening of the pulse duration,incubation phenomena,and morphological features appearing on the surface after femtosecond laser treatment are mentioned.Possible applications,e.g.,in medicine and biosensors,are de- scribed. KW - Dielectrics KW - Femtosecond laser KW - Micromachining KW - Ablation KW - Polymers PY - 2004 SN - 3-540-40471-6 N1 - Serientitel: Advances in polymer science – Series title: Advances in polymer science IS - 168 SP - 247 EP - 289 PB - Springer CY - Berlin AN - OPUS4-3262 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -