TY - CONF A1 - Kotthoff, Lisa A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Investigation of ionophore antibiotics and their transformation products by using electrochemistry coupled to LC-MS N2 - Ionophore antibiotics are used to cure and prevent coccidiosis by chicken especially in broiler farming. The residues are found not only in food products (chicken and eggs) but also in the environment (manure, soil or water). In this work the ionophores monensin (MON), salinomycin (SAL), maduramicin (MAD) and lasalocid (LAS) are investigated aiming to study their transformation products (TPs) through biotransformation processes. Biotransformation can be divided into two phases, phase I: oxidation, reduction or hydrolysis and Phase II: conjugation reactions. It is necessary to further examine the biotransformation pathways to determine TPs to be able to detect residues more specifically in different matrices. The technique of electrochemistry (EC) offers the opportunity to simulate biotransformation processes and to generate TPs for further analysis. The combination of EC with liquid chromatography and mass spectrometry (EC-LC-MS) provide a fast and simple tool to separate and determine the EC-generated TPs. The electrochemical flow through cell is coupled to the (LC)-MS system, allowing the reaction mixture to be separated by a RP-18 column and then analyzed in the MS. The oxidation products are generated at different potentials between 0.0 – 2.5 V vs. Pd/H2 using glassy carbon or boron doped diamond as working electrode materials . The results show a broad spectrum of different TPs depending on used solvents and working electrode materials. Among the generated TPs already known as well as unknown TPs of the drugs can be found. Further investigations on structure elucidation of unkown TPs are planned. T2 - World Conference on Analytical and Bioanalytical Chemistry CY - Barcelona, Spain DA - 23.07.2018 KW - Transformation Product KW - Electrochemistry KW - Ionophore Antibiotics PY - 2018 AN - OPUS4-45600 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kotthoff, Lisa A1 - Koch, Matthias A1 - Schwerdtle, T. T1 - Untersuchung von Biotransformationsprozessen von Ionophoren Antbiotika mittels online-Kopplung Elektrochemie LC-MS N2 - Ionophore Antibiotika werden zum Schutz gegen Kokzidiose eingesetzt, hauptsächlich in der Geflügelmast. Rückstände dieser Substanzen und deren Transformationsprodukte (TP) gelangen über den Metabolismus zum einen in das Geflügelfleisch, aber auch durch Ausscheidung in die Umwelt, da Tiermist als Dünger verwendet wird. Ziel dieser Forschungsarbeit ist es, die TP-Bildung von vier verschiedenen Ionophoren Antibiotika (Monensin (MON), Salinomycin (SAL), Maduramicin (MAD) und Lasalocid (LAS)) zu untersuchen. TPs werden durch den Biotransformationsprozess (Metabolismus) gebildet, dieser Prozess kann in zwei Phasen eingeteilt werden. Während in Phase I Oxidations-, Reduktions- oder Hydrolysereaktionen auftreten, ist Phase II von Konjugationsreaktionen geprägt. Durch diesen Prozess werden die Substanzen besser ausscheidbar. Natürliche Redox-Vorgänge, wie sie bei der Biotransformation (Phase I) auftreten, können mit elektrochemischen (EC) Systemen simuliert werden. In einer EC-Durchflusszelle findet die Reaktion abhängig vom angelegten Potential statt. Im positiven Potentialbereich (0.0 bis 3.0 V; vs. Pd/H2) werden die Analyten oxidiert und somit oxidative TPs generiert. Durch die online-Kopplung mit Flüssigkeitschromatografie (LC) und Massenspektrometrie (MS) wird zunächst eine säulenchromatografische Trennung der generierten TPs erhalten, gefolgt von der massenspektrometischen Detektion. Durch die online-Kopplung von EC-(LC)-MS ergibt sich eine schnelle Analysemöglichkeit von der TP-Erzeugung ausgewählter Substanzen bis hin zur Detektion, wodurch gleichzeitig eine Identifizierung möglich ist. Die ausgewählten Ionophoren Antibiotika wurden mittels EC-(LC)-MS auf auftretende TPs untersucht. Die ersten Ergebnisse zeigen ein breites Spektrum unterschiedlicher TPs abhängig von gewählten EC-Parametern wie Lösemittel, Modifier und insbesondere vom Arbeitselektrodenmaterial der EC-Durchflusszelle. Unter den erhaltenen TPs sind sowohl bekannte als auch unbekannte TPs vertreten, so dass weitere Untersuchungen zur Strukturaufklärung und vergleichende Tests zu Phase I Metaboliten (z.B. durch Metabolismus-Studien mit Mikrosomen) geplant sind. T2 - 47. Deutscher Lebensmittelchemikertag CY - Berlin, Germany DA - 17.09.2018 KW - Transformationsprodukte KW - Elektrochemie KW - Ionophore Antibiotika PY - 2018 AN - OPUS4-46007 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Choi, Youungeun A1 - Kotthoff, Lisa A1 - Olejko, L. A1 - Resch-Genger, Ute A1 - Bald, Ilko T1 - DNA origami-based Förster resonance energy-transfer nanoarrays and their application as ratiometric sensors N2 - DNA origami nanostructures provide a platform where dye molecules can be arranged with nanoscale accuracy allowing to assemble multiple fluorophores without dye–dye aggregation. Aiming to develop a bright and sensitive ratiometric sensor system, we systematically studied the optical properties of nanoarrays of dyes built on DNA origami platforms using a DNA template that provides a high versatility of label choice at minimum cost. The dyes are arranged at distances, at which they efficiently interact by Förster resonance energy transfer (FRET). To optimize array brightness, the FRET efficiencies between the donor fluorescein (FAM) and the acceptor cyanine 3 were determined for different sizes of the array and for different arrangements of the dye molecules within the array. By utilizing nanoarrays providing optimum FRET efficiency and brightness, we subsequently designed a ratiometric pH nanosensor using coumarin 343 as a pH-inert FRET donor and FAM as a pH-responsive acceptor. Our results indicate that the sensitivity of a ratiometric sensor can be improved simply by arranging the dyes into a well-defined array. The dyes used here can be easily replaced by other analyte-responsive dyes, demonstrating the huge potential of DNA nanotechnology for light harvesting, signal enhancement, and sensing schemes in life sciences. KW - DNA origami KW - FRET KW - Sensing KW - Ratiometric sensing KW - Fluorescence PY - 2018 U6 - https://doi.org/10.1021/acsami.8b03585 SN - 1944-8244 SN - 1944-8252 VL - 10 IS - 27 SP - 23295 EP - 23302 PB - ACS AN - OPUS4-46002 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -