TY - JOUR A1 - Schwarzer, M. A1 - Korwitz, A. A1 - Komber, H. A1 - Häußler, L. A1 - Dittrich, Bettina A1 - Schartel, Bernhard A1 - Pospiech, D. T1 - Phosphorus-containing polymer flame retardants for aliphatic polyesters JF - Macromolecular Materials and Engineering N2 - Polyesters with 9,10-dihydro-9-oxy-10-phosphaphenanthrene-10-oxide-containing comonomers are synthesized aiming to improve the flame retardancy of aliphatic polyesters such as poly(butylene succinate) and poly(butylene sebacate). The influence of the chemical structure on the thermal decomposition and pyrolysis is examined using a combination of thermogravimetric analysis (TGA), TGA-Fourier transform infrared (FTIR) spectroscopy, pyrolysis-gas chromatography/mass spectrometry, and microscale combustion flow calorimetry. Thermal decomposition pathways are derived and used to select suitable candidates as flame retardants for PBS. The fire behavior of the selected polymers is evaluated by forced-flaming combustion in a cone calorimeter. The materials show two modes of action for flame retardancy: strong flame inhibition due to the release of a variety of molecules combined with charring in the solid state. KW - Synthesis KW - Flame retardant KW - Aliphatic polyester KW - DOPO PY - 2018 DO - https://doi.org/10.1002/mame.201700512 SN - 1438-7492 SN - 1439-2054 VL - 303 IS - 2 SP - 1700512-1 EP - 1700512-16 PB - Wiley VCH Verlag AN - OPUS4-44334 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lenz, J. U. A1 - Pospiech, D. A1 - Komber, H. A1 - Korwitz, A. A1 - Kobsch, O. A1 - Paven, M. A1 - Albach, R. W. A1 - Günther, Martin A1 - Schartel, Bernhard T1 - Effective halogen-free flame-retardant additives for crosslinked rigid polyisocyanurate foams: Comparison of chemical structures JF - Materials N2 - The impact of phosphorus-containing flame retardants (FR) on rigid polyisocyanurate (PIR) foams is studied by systematic variation of the chemical structure of the FR, including non-NCO-reactive and NCO-reactive dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide (BPPO)- and 9,10 dihydro-9-oxa-10 phosphaphenanthrene-10-oxide (DOPO)-containing compounds, among them a number of compounds not reported so far. These PIR foams are compared with PIR foams without FR and with standard FRs with respect to foam properties, thermal decomposition, and fire behavior. Although BPPO and DOPO differ by just one oxygen atom, the impact on the FR properties is very significant: when the FR is a filler or a dangling (dead) end in the PIR polymer network, DOPO is more effective than BPPO. When the FR is a subunit of a diol and it is fully incorporated in the PIR network, BPPO delivers superior results. KW - Flame retardant; KW - Dibenzo[d,f][1,3,2]dioxaphosphepine 6-oxide; BPPO KW - 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide; DOPO KW - Polyisocyanurate; PIR KW - Rigid foam KW - Cone calorimeter KW - Pudovik reaction PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-567712 DO - https://doi.org/10.3390/ma16010172 SN - 1996-1944 VL - 16 IS - 1 SP - 1 EP - 22 PB - MDPI CY - Basel AN - OPUS4-56771 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -