TY - CONF A1 - Wondraczek, L. A1 - Reinsch, Stefan A1 - Gaber, Martin A1 - Deubener, J. A1 - Müller, Ralf A1 - Komatsu, T. T1 - Nano-crystalline germanate glass-ceramics T2 - 78. Glastechnische Tagung CY - Nürnberg, Deutschland DA - 2004-06-07 PY - 2004 SP - 37 EP - 40 PB - Deutsche Glastechnische Gesellschaft CY - Offenbach AN - OPUS4-6953 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Nagamine, K. A1 - Reinsch, Stefan A1 - Müller, Ralf A1 - Honma, T. A1 - Komatsu, T. T1 - Crystallization behavior of lithium iron phosphate glass powders in different atmospheres N2 - Crystallization behavior in different atmospheres (air, Ar, and 7% H2/Ar) of lithium iron phosphate glass (33Li2O–33Fe2O3–1Nb2O5–33P2O5 (LFNP)) powders with different sizes of 2–1000 µm was examined. The crystallization peak temperature (Tp) in Ar and 7% H2/Ar decreased with decreasing the particle size of glass powders, but the value of Tp in air was independent of particle size. The crystallized glass obtained by heating to Tp showed the formation of the α-Li3Fe2(PO4)3 and LiFePO4 crystalline phases. Fe2O3 crystals were formed only in the inside of crystallized glass plates in the heating in air. The crystallization of LiFePO4 was largely enhanced in the particle size of <2 µm during the heating in Ar and 7% H2/Ar atmospheres. The main crystallization mechanism in LFNP glass was found to be surface crystallization. Significant shrinkages were observed for glass compacts (pellets) in the heating in 7% H2/Ar. These results suggest that controlling particle sizes and atmospheres enables the design the morphology of LiFePO4 crystals in LFNP glass. KW - DTA KW - Kristallisation KW - Phasenentwicklung KW - Unterschiedliche Atmosphären KW - Lithiumionen-Batterie PY - 2011 U6 - https://doi.org/10.1111/j.1551-2916.2011.04579.x SN - 0002-7820 SN - 1551-2916 VL - 94 IS - 9 SP - 2890 EP - 2895 PB - Blackwell Publishing CY - Malden AN - OPUS4-24914 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Akatsuka, C. A1 - Honma, T. A1 - Müller, Ralf A1 - Reinsch, Stefan A1 - Tanaka, S. A1 - Komatsu, T. T1 - Surface crystallization and gas bubble formation during conventional heat treatment in Na2MnP2O7 glass N2 - The crystallization behavior of sodium ion conductive Na2MnP2O7 glass was examined to clarify the crystallization mechanism. The formation of thermodynamically metastable phase, layered Na2MnP2O7, at the surface of the glass occurred. Heat treatment at 430 °C for 3 h lead to surface crystals of Na2MnP2O7 oriented with the (101) direction perpendicular to the sample surface. As the heat treatment temperature increased, the glass-ceramic samples deformed, and the presence numerous micro bubbles due to dissolved water was detected. KW - Glass-ceramic KW - Crystallization KW - Sodium ion batteries KW - Bubble formation KW - Phosphate PY - 2019 U6 - https://doi.org/10.1016/j.jnoncrysol.2019.01.030 VL - 510 SP - 36 EP - 41 PB - Elsevier B.V. AN - OPUS4-49618 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Deubener, J. A1 - Allix, M. A1 - Davis, M.J. A1 - Duran, A. A1 - Höche, T. A1 - Honma, T. A1 - Komatsu, T. A1 - Krüger, S. A1 - Mitra, I. A1 - Müller, Ralf A1 - Nakane, S. A1 - Pascual, M.J. A1 - Schmelzer, J.W. A1 - Zanotto, E.D. A1 - Zhou, S. T1 - Updated definition of glass-ceramics N2 - Glass-ceramics are noted for their unusual combination of properties and manifold commercialized products for consumer and specialized markets. Evolution of novel glass and ceramic processing routes, a plethora of new compositions, and unique exotic nano- and microstructures over the past 60 years led us to review the Definition of glass-ceramics. Well-established and emerging processing methods, such as co-firing, additive manufacturing, and laser patterning are analyzed concerning the core requirements of processing glass-ceramics and the Performance of the final products. In this communication, we propose a revised, updated definition of glass-ceramics, which reads “Glass-ceramics are inorganic, non-metallic materials prepared by controlled crystallization of glasses via different processing methods. They contain at least one type of functional crystalline phase and a residual glass. The volume fraction crystallized may vary from ppm to almost 100%”. KW - Glass-ceramics definition PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-464711 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 3 EP - 10 PB - Elsevier B.V. AN - OPUS4-46471 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotaka, M. A1 - Honma, T. A1 - Komatsu, T. A1 - Shinozaki, K. A1 - Affatigato, M. A1 - Müller, Ralf T1 - Control of self-powdering phenomenon in ferroelastic β′-Gd2(MoO4)3 crystallization in boro-tellurite glasses N2 - Glasses with compositions of 21Gd2O3-63MoO3-(16-x)B2O3-xTeO2 (mol%) (x= 0, 2, 4, 8) were prepared using a conventional melt quenching technique, and the crystallization behavior of ferroelastic β′-Gd2 MoO4)3 Crystals was examined to clarify the mechanism of self-powdering phenomenon and to design bulk crystallized glasses. It was found that the self-powdering phenomenon appeared significantly during the crystallization at temperatures near the crystallization peak temperature, but the phenomenon is suppressed in the crystallization at temperatures much higher than the glass transition temperature. It was also found that the substitution of TeO2 for B2O3 in the base glasses suppresses the self-powdering phenomenon and consequently bulk crystallized glasses were obtained in the glass with x=8 mol%. The densities at room temperature of the base glasses are d =4.755–4.906 g/cm3, being much higher than the value of d=4.555 g/cm3 for β′-Gd2(MoO4)3 crystal. It is proposed that the stresses in the inside of crystals induced by large density differences (i.e., large molar volume differences) between the glassy phase and crystals might be relaxed effectively in the glasses containing TeO2 with weak TeeO bonds and fragile character. KW - Glass crystallization stress PY - 2018 U6 - https://doi.org/10.1016/j.jnoncrysol.2017.12.006 SN - 0022-3093 SN - 1873-4812 VL - 501 SP - 85 EP - 92 PB - Elsevier B.V. AN - OPUS4-46472 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -