TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Rahman, Mehbub-Ur A1 - Boehm, Rainer A1 - Prager, Jens A1 - Chinta, P.K. T1 - Simulation of Ultrasonic Sound Fields in Anisotropic Materials Using 2-D Ray Tracing Method T2 - International Congress on Ultrasonics (ICU), University of Gdansk T2 - International Congress on Ultrasonics (ICU), University of Gdansk CY - Gdansk, Poland DA - 2011-09-05 PY - 2011 AN - OPUS4-24453 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Götschel, S. A1 - Höhne, Christian A1 - Kolkoori, Sanjeevareddy A1 - Mitzscherling, Steffen A1 - Prager, Jens A1 - Weiser, M. T1 - Ray tracing boundary value problems: simulation and SAFT reconstruction for ultrasonic testing T2 - World Conference on Non-Destructive Testing 2016 N2 - The application of advanced imaging techniques for the ultrasonic inspection of inhomogeneous anisotropic materials like austenitic and dissimilar welds requires information about acoustic wave Propagation through the material, in particular travel times between two Points in the material. Forward ray tracing is a popular approach to determine traveling paths and arrival times but is ill suited for inverse problems since a large number of rays have to be computed in order to arrive at prescribed end points. In this contribution we discuss boundary value problems for acoustic rays, where the ray path between two given points is determined by solving the Eikonal equation. The implementation of such a two Point boundary value ray tracer for sound field simulations through an austenitic weld is described and its efficiency as well as the obtained results are compared to those of a forward ray tracer. The results are validated by comparison with experimental results and commercially available UT simulation tools. As an application, we discuss an implementation of the method for SAFT (Synthetic Aperture Focusing Technique) reconstruction. The ray tracer calculates the required travel time through the anisotropic columnar grain structure of the austenitic weld. There, the formulation of ray tracing as a boundary value Problem allows a straightforward derivation of the ray path from a given transducer Position to any pixel in the reconstruction area and reduces the computational cost considerably. T2 - 19th World Conference on Non-Destructive Testing 2016 CY - München, Germany DA - 13.06.2016 KW - Ultrasonic testing KW - SAFT KW - Ray tracing KW - Simulation PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-370494 UR - www.ndt.net/?id=19437 SP - ID 19437, 1 EP - 8 AN - OPUS4-37049 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Kolkoori, Sanjeevareddy A1 - Bellon, Carsten T1 - Quantitative simulation of back scatter X-ray imaging and comparison to experiments T2 - Proceedings of the 19th World Conference on Nondestructive Testing N2 - X-ray backscatter imaging is a well established NDT technique to inspect complex objects using only a single-sided access. In difference to conventional transmission X-ray radiography, the X-ray backscatter imaging utilizes the scattered radiation caused by the Compton scattering effect. In order to achieve high backscatter intensities from a test object, it is necessary to optimize the backscatter system parameters namely the angle between source and slit camera, the slit collimator system, the shielding between source and scatter camera, and the type of detector. In addition, the scatter phenomena in to the investigated object need to be understood. In this contribution, we present a Monte Carlo model McRay which considers all relevant single and multiple interactions of photons and electrons. This model can be used to simulate back scatter techniques. It allows not only calculating the scatter image for a given experimental setup but also registering the spectrum of the detected scattered photons. Both aspects are important to understand the imaging process, to interpret the results, and to optimize the backscatter camera investigated here. Additionally experimental results will be presented and compared with simulations. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Radiology KW - Back-scatter techniques KW - Simulation KW - Monte Carlo methods KW - Measurements PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365897 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 11 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung (DGZfP) CY - Berlin, Germany AN - OPUS4-36589 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - THES A1 - Kolkoori, Sanjeevareddy T1 - Quantitative Evaluation of Ultrasonic Wave Propagation in Inhomogeneous Anisotropic Austenitic Welds using 3D Ray Tracing Method: Numerical and Experimental Validation N2 - Austenitic welds and dissimilar welds are extensively used in primary circuit pipes and pressure vessels in nuclear power plants, chemical industries and fossil fuelled power plants because of their high fracture toughness, resistance to corrosion and creep at elevated temperatures. However, cracks may initiate in these weld materials during fabrication process or stress operations in service. Thus, it is very important to evaluate the structural integrity of these materials using highly reliable non- destructive testing (NDT) methods. Ultrasonic non-destructive inspection of austenitic welds and dissimilar weld components is complicated because of anisotropic columnar grain structure leading to beam splitting and beam deflection. Simulation tools play an important role in developing advanced reliable ultrasonic testing (UT) techniques and optimizing experimental parameters for inspection of austenitic welds and dissimilar weld components. The main aim of the thesis is to develop a 3D ray tracing model for quantitative evaluation of ultrasonic wave propagation in an inhomogeneous anisotropic austeniticweld material. Inhomogenity in the anisotropic weld material is represented by discretizing into several homogeneous layers. According to ray tracing model, ultrasonic ray paths are traced during its energy propagation through various discretized layers of the material and at each interface the problem of reflection and transmission is solved. The influence of anisotropy on ultrasonic reflection and transmission behaviour in an anisotropic austenitic weld material are quantitatively analyzed in three dimensions. Theultrasonic beam directivity in columnar grained austenitic steel material is determined three dimensionally using Lamb’s reciprocity theorem. The developed ray tracing model evaluates the transducer excited ultrasonic fields accurately by taking into account the directivity of the transducer, divergence of the ray bundle, density of rays and phase relations as well as transmission coefficients. The ray tracing model is able to determine the ultrasonic wave fields generated by a point source as well as finite dimension array transducers. T3 - BAM Dissertationsreihe - 112 KW - Nondestructive Testing KW - Inhomogeneous Materials KW - Austenitic Weld KW - Zerstörungsfreie Prüfung KW - 3D Ray Tracing Verfahren KW - Ultraschallfeld KW - austenitische Schweißnaht KW - inhomogene Materialien KW - 3D Ray Tracing Method KW - Ultrasonic Field PY - 2014 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-469 SN - 978-3-9815944-6-1 SN - 1613-4249 VL - 112 SP - 1 EP - 272 PB - Bundesanstalt für Materialforschung und -prüfung (BAM) CY - Berlin AN - OPUS4-46 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Kreutzbruck, Marc A1 - Rahman, Mehbub-Ur A1 - Prager, Jens A1 - Chinta, P.K. T1 - Quantitative Evaluation of Ultrasonic Sound Field in Anisotropic Austenitic welds using 2D Ray tracing model T2 - 38th Annual Reviwe if Progress in Quantitative Non- Destructive Evaluation (QNDE 2011), University of Vermont T2 - 38th Annual Reviwe if Progress in Quantitative Non- Destructive Evaluation (QNDE 2011), University of Vermont CY - Burlington, VT, USA DA - 2011-07-17 PY - 2011 AN - OPUS4-24333 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Zscherpel, Uwe A1 - Osterloh, Kurt A1 - Ewert, Uwe T1 - Novel X-ray Backscatter Technique for Detecting Dangerous Materials: Application to Aviation and Port Security T2 - 2nd European Conference on Detection of Explosives T2 - 2nd European Conference on Detection of Explosives CY - Rome, Italy DA - 2013-03-13 PY - 2013 AN - OPUS4-27857 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Jaenisch, Gerd-Rüdiger A1 - Kolkoori, Sanjeevareddy A1 - Deresch, Andreas T1 - Influence of scattered radiation on the efficiency of dual high-energy X-Ray imaging for material characterization T2 - Proceedings of the 19th Wolrd Conference on Nondestructive Testing N2 - In this contribution, we discuss the influence of scattered radiation on materials’ effective attenuation coefficients at higher X-ray energies. The selected X-ray spectra for the dual-energy experiments correspond to 3 MV and 7.5 MV acceleration potential of the used betatron. Experiments were performed on a test phantom containing step wedges of different low- and high-Z materials. We evaluated the ratio between low- and high-energy X-ray attenuation coefficients quantitatively based on simulated poly-energetic high-energy X-ray source spectra and the detector sensitivity using the “analytical Radiographic Testing inspection simulation tool” (aRTist) developed at BAM. Furthermore, the influence of scattered radiation is evaluated using an efficient Monte-Carlo simulation. The simulation results are compared quantitatively with experimental investigations. Finally, important applications of the proposed technique in the context of aviation security are discussed. T2 - 19th World Conference on Nondestructive Testing CY - Munich, Germany DA - 13.06.2016 KW - Monte Carlo methods KW - Dual-energy imaging KW - Simulation KW - Experiments PY - 2016 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-365925 SN - 978-3-940283-78-8 VL - 158 SP - 1 EP - 10 PB - DGZfP CY - Berlin, Germany AN - OPUS4-36592 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Osterloh, Kurt A1 - Redmer, Bernhard A1 - Deresch, Andreas A1 - Ewert, Uwe T1 - Hochenergieradiographie - Erkennung von Einzelheiten in großen, komplexen Schichttiefen T2 - DGZfP-Jahrestagung 2013 N2 - Zur Durchstrahlung großer, dichter Objekte reichen die Energien, die mit normalen Röntgenröhren erzielt werden können, ab gewissen Schichtdicken nicht mehr aus. Als hochenergetische Strahlenquellen stehen Kobalt-60 und Elektronenbeschleuniger zur Verfügung. Als Einschränkung der Hochenergieradiographie ist der geringere Kontrast besonders beim Vorhandensein leichterer Objekte umgeben von Körpern bestehend aus schweren Elementen anzusehen. Es ist daher zu erwarten, dass Objekte aus organischen Substanzen hinter dicken Schwermetallwänden oder in Bohrungen von Metallblöcken schwer zu erkennen sind. Im Gegensatz zu einem Gammastrahler wie Kobalt-60 mit den beiden Spektrallinien um 1,3 MeV besitzt die Bremsstrahlung aus einem Beschleuniger einen wesentlichen Anteil an niederenergetischer Strahlung, der fließend zu höheren Energien übergeht. Es wird hier untersucht, welche Signaturen von leichten Materialien in einer Umgebung aus Schwermetall bis zu welcher Dicke und bis zu welchem Komplexizitätsgrad erkennbar sind. Mit einem Betatron (JME X-ray Betatron 7,5 MeV) und einem Matrixdetektor (Perkin Elmer XRD 1621) wurden Aufnahmen von unterschiedlichen leichten Objekten angefertigt, die zunehmend in eine Umgebung aus Schwermetallen gestellt wurden. Mit unterschiedlichen Energieeinstellungen wurde untersucht, inwieweit eine Materialerkennung hinter welcher Abschirmung möglich ist. Die experimentellen Ergebnisse werden mit Simulationen verglichen, die mit einer Software zur Modellierung von Durchstrahlungsverfahren (aRTist) erzeugt wurden. Dabei wird dem Problem der Aufhärtung bei Anwendung von Bremsstrahlung Rechnung getragen. Die Ergebnisse können sowohl zur Erkennung von Fremdkörpern in Maschinen oder Pumpen als auch zur Überprüfung von Frachtladungen im Bereich der öffentlichen Sicherheit und bei Zollkontrollen dienen. T2 - DGZfP-Jahrestagung 2013 CY - Dresden, Germany DA - 06.05.2013 KW - Hochenergieradiographie KW - Containerprüfung KW - Materialerkennung PY - 2013 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-288589 SN - 978-3-940283-49-8 IS - DGZfP-BB 141 (Mo.2.A.4) SP - 1 EP - 9 PB - Deutsche Gesellschaft für zerstörungsfreie Prüfung e.V. (DGZfP) AN - OPUS4-28858 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kolkoori, Sanjeevareddy A1 - Wrobel, Norma A1 - Zscherpel, Uwe A1 - Ewert, Uwe T1 - Hochauflösende Röntgenrückstreutechnik zur zerstörungsfreien Untersuchung von Komponenten für die Luftfahrt T2 - DACH-Jahrestagung 2015 T2 - DACH-Jahrestagung 2015 CY - Salzburg, Austria DA - 2015-05-11 PY - 2015 AN - OPUS4-33587 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Wrobel, Norma A1 - Kolkoori, Sanjeevareddy A1 - Osterloh, Kurt A1 - Ewert, Uwe ED - Lauster, M. T1 - High energy X-ray radiography: detection of dangerous materials in cargo containers T2 - 8th Future security research conference (Proceedings) N2 - For the radiographic investigation of large cargo Containers the energies of conventional Xray tubes are inadequately for certain layer thicknesses. In that case the high energy radiation sources like electron accelerators and gamma radiators (60CO) are adequate for the non invasive inspection of large Containers because of the high penetration through thick materials. Multiple imaging even enables to distinguish between different materials. The main challenging task in air and sea cargo Container inspection is to improve the detectability of contraband and dangerous materials which are hidden in the heterogeneously packed Containers by detailed analysis of cluttered radiographic images. So it is to be expected that objects of organic substances like certain explosives or their precursors are hard to identify behind thick walls of heavy metal objects such as engine-blocks with flat bottom holes. The primary aim here is to investigate the detectability of dangerous materials (typically of light elements) in cargo Containers using high energy X-ray digital radiography. T2 - 8th Future security research conference CY - Berlin, Germany DA - 17.09.2013 KW - Hochenergieradiographie KW - Containerprüfung KW - Materialerkennung PY - 2013 SN - 978-3-8396-0604-9 SP - 461 EP - 462 PB - Fraunhofer Verlag AN - OPUS4-29326 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -