TY - CONF A1 - Koerdt, Andrea T1 - The Power of networks – COST Action CA20130 N2 - For optimal research on microbiologically influenced corrosion (MIC), balanced and interdisciplinary cooperation is extremely important. However, differing perspectives, thought processes, and even variations in nomenclature/terminology often hinder the establishment of effective collaborations. Over the past four years, COST Action Euro-MIC (CA20130) has effectively addressed these discrepancies. Through regular meetings, conferences, and scientific exchanges, a large international network has been established. Many scientific findings and results have been achieved through scientific, interdisciplinary exchange within the international network. The upcoming presentation will highlight three examples (among many others) that have resulted in successful collaborations, third-party funding applications, publications, or outstanding results and emphasize that successful results in MIC research, facilitated by an interdisciplinary network, can lead more quickly to meaningful and application-oriented findings. Project 1&2 describe two different kinds of Projects related to the use of Nanoparticles; one is about the efficacy testing of novel Nanoparticles. Project 2 deals about how to apply already working and tested nanoparticles to different materials and conditions. Project 3a is related to the energy sector; a crucial part of our society, and currently undergoing significant changes. Climate change, rising temperatures, increased use of fertilizers and other environmental pollutants have led to an increasing occurrence of microorganisms and contamination in some sectors. But how we deal with “baggage” from the past and store nuclear waste without harm or risk for human and environment, but also how to transfer the gained knowledge to areas like safe Hydrogen storage in geological underground formation. T2 - ISMOS10 CY - Nashville, TN, USA DA - 11.08.2025 KW - COST Action CA20130 KW - MIC KW - STSM Grants KW - Networking PY - 2025 AN - OPUS4-64295 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Euro-MIC COST Action CA20130 Closing Workshop & Conference N2 - Ensuring the safety of offshore wind structures (OWS) is critical to guaranteeing their long-term performance and supporting reliable green energy supply. Microbiologically influenced corrosion (MIC) presents a significant challenge, particularly for monopiles in seabed environments. This study investigates the behavior of microorganisms and their impact on the corrosion process of carbon steel within monopiles. To simulate MIC at the sediment/water interface, an in-house experimental column was developed and inoculated with sediment and water samples from the North Sea. The system was operated under varying flow rates to replicate seabed movement conditions. Multiple molecular microbiological methods, surface analysis techniques, and other approaches were employed to assess the effects of different treatments. This study provides insights into MIC mechanisms in offshore environments and supports the development of strategies to monitor MIC in OWS infrastructure T2 - Final COST Action Conference - Horsens CY - Horsens, Denmark DA - 17.09.2025 KW - MIC KW - COST Action Euro-MIC KW - Interdisciplinarity PY - 2025 AN - OPUS4-64299 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Cost action EURO MIC (CA20130) N2 - Vorstellung des vor kurzen angelaufenen EU-Projekts: COST ACTION EURO MIC ( CA20130). Die BAM hat hierbei die Rolle des Chairs sowie Grant-Holding Institute. COST fördert internationale Netzwerk Aktivitäten. Durch COST Action können neue Kooperationen (Industrie, Akademie oder Politk) entstehen. T2 - Dechema CY - Online meeting DA - 10.11.2021 KW - Netzwerk KW - COST KW - Mikrobiell beeinflusste Korrosion KW - MIC PY - 2021 AN - OPUS4-54023 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Euro-MIC 2021-2025, our journey, and paths forward N2 - Microbiologically Influenced Corrosion (MIC) refers to the detrimental effects on materials caused by microorganisms, and it is becoming an increasingly significant issue for society. Unlike the USA, Canada, and Australia, Europe has less developed cooperation on MIC. Although several research groups and industrial stakeholders are addressing MIC, discussions remain fragmented, and information exchange is limited. A truly transdisciplinary approach is rarely seen. As a result, Europe often relies on methods, preventive measures, and standards from other regions, as there are no equivalent European standards. This situation makes Europe a) highly dependent, and b) in some cases, unable to use certain measures or standards due to European legal restrictions (e.g., the use of biocides). In 2021, researchers established the “Euro-MIC” network, financially supported by the EU project “COST-Action,” to tackle these issues. Through COST-Action, Euro-MIC aims to facilitate necessary interactions, communication, knowledge sharing, and training for personnel and researchers across various disciplines. COST-Action supports network activities, workshops, training schools, conferences, and more. Euro-MIC aspires to position Europe as a leader in MIC, promoting ideas on par with other nations while upholding European values and ensuring greater protection for people, property, and the environment. In this presentation, I will briefly introduce the principles of COST Action and highlight the significant opportunities provided by this EU-funded project. COST Action fosters interdisciplinarity, networking, training, scientific exchange, and the promotion of young scientists. By showcasing some examples of CA20130 COST ACTION Euro-MIC, I hope to demonstrate that COST Action is not only relevant for addressing MIC but can also be applied to other important topics and sectors. T2 - Unseen Corrosion: Unveiling Hidden Threats and Innovating Monitoring Solutions CY - Bergen, Norway DA - 15.05.2025 KW - COST Action CA20130 KW - MIC KW - Network KW - Corrosion KW - Microorganisms PY - 2025 UR - https://www.norceresearch.no/en/events/unseen-corrosion AN - OPUS4-63726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - The impact of methanogenic Archaea on material, environment and health N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g.Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation/transformation. T2 - IBRG-Tagung CY - Berlin, Germany DA - 26.04.17 KW - Biofilm KW - Corrosion KW - Implants KW - Methanogens KW - Archaea KW - Anaerob PY - 2017 AN - OPUS4-42492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Microbial corrosion of iron coupled to methanogenesis by strains from different environments N2 - Microbially influenced corrosion (MIC) of iron is usually attributed to sulfate-reducing microorganisms (SRM) which act upon the metal by the reactiveness of hydrogen sulfide, and by withdrawal of the available electrons in electrical contact with the metal. Methanogenic archaea are supposed to cause MIC. Because they do not produce hydrogen sulfide, withdrawal of electrons may be their main corrosive mechanism; however, mechanistic details and kinetics of the overall process are poorly understood. Precipitation of siderite (4Fe + 5HCO3 + 5H+  4FeCO3 + CH4 + 3H2O) can lead to an insulating layer on the metal surface and lower the corrosion rate. Still, the extent of FeCO3 precipitation may be significantly influenced by environmental conditions such as pH and advective processes. T2 - ISME CY - Leipzig, Germany DA - 12.08.2018 KW - Methanogens KW - MIC KW - Corrosion KW - Environmental Simulation PY - 2018 AN - OPUS4-46397 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Mikrobiell beeinflusste Korrosion (MIC) – Wenn MIC dann BAM N2 - In dieser Präsentation wurden dem Beirat Umwelt die High-Lights und der weitere Ausblick des Foresight Process MIC vorgestellt. Im Fokus stehen hierbei insbesondere die neu angelaufenen Projekte: COST Action Euro-MIC MIC im Endlager Hydrogen: MIC & Wasserstoffversprödung Biorezeptivität von Betonoberflächen Mitigation schwarze Pilze WIPANO ResTest T2 - Beirat Umwelt CY - Online meeting DA - 11.03.2022 KW - MIC KW - Hi-Tension KW - Projekte PY - 2022 AN - OPUS4-54463 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Methanogene Archaea - The impact of methanogenic Archaea on material, environment and health N2 - Different environmental samples reveal that methanogenic Archaea are part of a multi-species biofilm on corroding metallic structures (Fig. 1). Studies on microbial influenced corrosion (MIC) focus mainly on sulphate reducing Bacteria (SRB), leading to the assumption that they are exclusively responsible for metal corrosion. In fact, methanogenic Archaea are known to be involved in metal corrosion as well (e.g. Methanococcus maripaludis DSM 2067). In some cases SRB and methanogenic Archaea have comparable high corrosion rates. However, the underlying mechanisms causing corrosion are still unknown. The goal of this study is to analyse two environmental isolates (M. maripaludis DSM 2067, M. maripaludis KA1) and two human-related isolates (Methanobrevibacter oralis and Methanobrevibacter smithii) for their ability to deteriorate/transform metals, which are relevant for technical and clinical applications. Moreover, the studies will provide essential information on the interaction mechanisms of human-related Archaea, which are frequently found in peri-implantitis, with dental material such as implants, crowns and bridges leading to their degradation/ transformation. T2 - EMBO-Course CY - Wageningen, The Netherlands DA - 24.07.2017 KW - Corrosion KW - Methanogens KW - Biofilm KW - Implants PY - 2017 AN - OPUS4-41899 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Olbrich, Adelina-Elisa A1 - An Stepec, Biwen Annie A1 - Wurzler, Nina A1 - Terol, E. C. A1 - Koerdt, Andrea A1 - Meermann, Björn T1 - Beyond corrosion: Development of a single cell-ICP-ToF-MS method to uncover the process of microbiologically influenced corrosion N2 - The development of the microbiologically influenced corrosion ( MIC ) -specific inductively coupled plasma-time of flight-mass spectrometry ( ICP-ToF-MS ) analytical method presented here, in combination with the investigation of steel-MIC interactions, contributes significantly to progress in instrumental MIC analysis. For this, a MIC-specific staining procedure was developed, which ensures the analysis of intact cells. It allows the analysis of archaea at a single cell level, which is extremely scarce compared to other well-characterized organisms. The detection method revealed elemental selectivity for the corrosive methanogenic strain Methanobacterium -affiliated IM1. Hence, the possible uptake of individual elements from different steel samples was investigated and results showed the cells responded at a single-cell level to the different types of supplemented elements and displayed the abilities to uptake chromium, vanadium, titanium, cobalt, and molybdenum from solid metal surfaces. The methods developed and information obtained will be used in the future to elucidate underlying mechanisms, compliment well-developed methods, such as SEM-EDS, and develop novel material protection concepts. KW - Single cell KW - Microbiological influenced corrosion MIC KW - Sc-ICP-ToF-MS KW - Method development KW - Ir DNA staining approach KW - Carbon steel corrosion PY - 2022 DO - https://doi.org/10.1093/mtomcs/mfac083 SN - 1756-591X VL - 14 IS - 11 SP - 1 EP - 15 PB - Oxford University Press CY - Oxford AN - OPUS4-56254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koerdt, Andrea T1 - Simulating Microbiologically Influenced Corrosion (MIC) at Seabed Environment in Monopile N2 - Ensuring the safety of offshore wind structures (OWS) is critical to guaranteeing their long-term performance and supporting reliable green energy supply. Microbiologically influenced corrosion (MIC) presents a significant challenge, particularly for monopiles in seabed environments. This study investigates the behavior of microorganisms and their impact on the corrosion process of carbon steel within monopiles. To simulate MIC at the sediment/water interface, an in-house experimental column was developed and inoculated with sediment and water samples from the North Sea. The system was operated under varying flow rates to replicate seabed movement conditions. Multiple molecular microbiological methods, surface analysis techniques, and other approaches were employed to assess the effects of different treatments. This study provides insights into MIC mechanisms in offshore environments and supports the development of strategies to monitor MIC in OWS infrastructure T2 - ISMOS10 CY - Nashville, TN, USA DA - 11.08.2025 KW - MIC KW - Environmental Simulation KW - Field testing KW - Marine Environment PY - 2025 AN - OPUS4-64298 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -