TY - CONF A1 - Koclęga, Damian A1 - Dymek, S. A1 - Radziszewska, A. A1 - Huebner, J. T1 - Optimization of laser treatment parameters of Inconel 686 overlay weld on carbon steel 13Mo4-5 N2 - The work presents the effects of the change of the laser cladding parameters on microstructure, chemical composition and mechanical properties of Inconel 686 overlays (coatings). To obtain the best quality of these coatings the various parameters of laser cladding such as the power density of the laser beam, the laser beam velocity and overlapping ratio of the weld tracks were applied. The substrates were boilers plate made of the 13Mo4-5 steel. Ni - base alloys characterize by the excellent high-temperature corrosion resistance, good strength and good ability to work in aggressive environments. Applied overlays had a proper combination of the metal substrate in particular small amount of Fe. This could be achieved by the reduction of the substrate melting and its dissolution into the overlays. The microstructure, chemical composition of the obtained overlays were investigated by means of a light microscope, a scanning electron microscope (SEM) equipped with the EDS detector. The overlays had cellular-dendritic structure. The variations of the chemical composition (especially Mo, Ni and W ) in the interdendritic and dendritic regions were observed. The interdendritic regions were enriched during solidifications in Mo and W and had lower content of Ni. T2 - METAL 2017 CY - Brno, Czech Republic DA - 24.05.2017 KW - Laser cladding KW - Overlay KW - Chemical composition KW - Inconel 686 PY - 2017 AN - OPUS4-44464 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclęga, Damian A1 - Dymek, S. A1 - Radziszewska, A. A1 - Huebner, J. T1 - Laser cladding of Inconel 686 overlay weld on low carbon steel N2 - The work presents the effects of the change of the laser cladding parameters on microstructure, chemical composition and mechanical properties of Inconel 686 overlays (coatings). To obtain the best quality of These coatings the various parameters of laser cladding such as the power density of the laser beam, the laser beam velocity and overlapping ratio of the weld tracks were applied. The substrates were boilers plate made of the 13CrMo4-5 steel. Ni - base alloys characterize by the excellent high-temperature corrosion resistance, good strength and good ability to work in aggressive environments. This could be achieved by the reduction of the substrate melting and its dissolution into the overlays. The microstructure, chemical composition of the obtained overlays were investigated by means of a light microscope, a scanning electron microscope (SEM) equipped with the EDS detector. The overlays had cellular-dendritic structure. The variations of the chemical composition (especially Mo, Ni and W ) in the interdendritic and dendritic regions were observed. The interdendritic regions were enriched during solidifications in Mo and W and had lower content of Ni. T2 - 26TH INTERNATIONAL CONFERENCE ON METALLURGY AND MATERIALS CY - Brno, Czech Republic DA - 24.05.2017 KW - Laser cladding KW - Overlay KW - Chemical composition KW - Inconel 686 KW - Process optimization PY - 2017 SP - 1327 EP - 1333 AN - OPUS4-45629 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Marynowski, P. A1 - Wozny, K. T1 - Morphology and chemical composition of inconel 686 after high-temperature corrosion N2 - The work presents the microstructure, chemical composition and mechanical properties of Inconel 686 coatings after high - temperature corrosion in environment of aggressive gases and ashes. To produce the Ni - based coatings the QS Nd:YAG laser cladding process was carried out. As the substrate used 13CrMo4-5 boilers plate steel. Ni - base alloys characterize the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. Formed clad were characterized by high quality of metallurgical bonding with the substrate material and sufficiently low amount of the iron close to the clad layer surface. After corrosion experiment the oxide scale on the substrate and clad created. The scale on 13CrMo4-5 steel had 70 μm thickness while the scale of the clad had less than 10 μm. The microstructure, chemical composition of the obtained clad and scales were investigated by scanning electron microscope (SEM) and electron probe microanalyzer (EPMA) equipped with the EDS detectors. T2 - 27th International conference on metallurgy and materials CY - Brno, Czech Republic DA - 23.05.2018 KW - laser cladding KW - Inconel 686 KW - High - temperature corrosion KW - Aggressive environment KW - Oxide scale PY - 2018 SP - 1010 EP - 1016 AN - OPUS4-49660 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Morgiel, J. A1 - Maj, L. A1 - Kranzmann, Axel T1 - Improvement of Corrosion Resistance of 13CrMo4-5 Steel by Ni-Based Laser Cladding Coatings N2 - The 13CrMo4-5 ferritic steel is commonly used in power plants, due to its favorable mechanical properties. According to EN 10028-2, this steel can be used at temperatures up to 570°C because of its creep behavior. The inefficient corrosion resistance limits the application of this steel to lower temperatures depending on the gas temperature and slag formation. Therefore, the application of a highly resistant Ni-based coating is proposed to extend the corrosion resistance of elements made of ferritic steel. The corrosion test was performed in an environment containing a mixture of gases, like O2, COx, and SOx, and deposited ashes with elements, e.g., Na, Cl, Ca, Si, C, Fe, and Al. The exposure time was, respectively, 240 h, 1000 h and 4500 h at a temperature of 600°C. The oxide scale formed on the 13CrMo4-5 steel was significantly thicker than on the IN686 coating. The microstructure and chemical and phase compositions of the oxide scale were investigated using light optical microscopy together with scanning and transmission electron microscopy techniques. Energy dispersive x-ray analyses were performed when appropriate. KW - Aggressive environments KW - Corrosion resistance KW - High - temperature KW - Inconel 686 KW - Laser cladding PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-514289 SN - 1059-9495 VL - 29 IS - 6 SP - 3702 EP - 3713 PB - Springer AN - OPUS4-51428 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel T1 - The influence of the aggressive environments on the Inconel 686 coating in high-temperature corrosion experiments N2 - This work presents the microstructure and chemical composition of oxide scales created on Ni – base coating after corrosion experiments in aggressive gases and ashes. The Inconel 686 coating applied on the low carbon steel 13CrMo4-5 was performed by a CO2 laser cladding process. The experiments were carried out in oxidizing gas atmospheres containing O2, COx, SOx. The second Variation of corrosion experiments were performed in a reducing atmosphere with ashes containing elements such as: Na, Cl, Ca, Si, C, Fe, Al etc. After 240 h and 1.000 h corrosion experiments the oxide scales on the substrate and overlay were created in both cases. The sulfur compounds were found on the top of the coating surface (EPMA) and also higher contents of silica compounds were revealed on specimens covered by ashes during the experiments. The microstructure and chemical composition of the clad and scales were investigated by means of a light microscope and an electron microscope (SEM)equipped with an EDS detector. T2 - 50. Kraftwerkstechnisches Kolloquium CY - Dresden, Germany DA - 23.10.2018 KW - Nickel based coatings KW - Inconel 686 KW - High temperature corrosion PY - 2018 SP - 599 AN - OPUS4-46590 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koclega, Damian A1 - Petrzak, P. A1 - Kowalski, K. A1 - Rozmus-Gornikowska, M. A1 - Debowska, A. A1 - Jedrusik, M. T1 - Annealing effect on microstructure and chemical composition of Inconel 625 alloy N2 - Our research focused on Inconel 625 weld overlays on 16Mo3 steel boiler pipes. The Investigation focused on the characterization of changes in the microstructure and chemical composition after annealing. The annealing was performed for ten hours at temperatures from 600 to 1000°C. Changes in the microstructure were observed with a scanning and transmission electron microscope (SEM and TEM). The investigation was supplemented by hardness measurements. KW - Inconel 625 KW - Microsegregation KW - Annealing PY - 2018 U6 - https://doi.org/10.7494/mafe.2018.44.2.73 SN - 1230-2325 SN - 0860-6307 SN - 2300-8377 VL - 44 IS - 2 SP - 73 EP - 80 PB - AGH University of Science and Technology Press CY - Cracow AN - OPUS4-49659 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclęga, Damian A1 - Radziszewska, A. A1 - Kranzmann, Axel A1 - Dymek, S. T1 - Microstructure characterization of the Inconel 686 clad layer after high-temperature corrosion tests in aggressive gases and ashes N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - Junior EUROMAT 2018 CY - Budapest, Hungary DA - 08.07.2018 KW - Laser Cladding KW - Inconel 686 KW - High temperature corrosion KW - Aggressive environement KW - Material oxidation PY - 2018 AN - OPUS4-45627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, A. A1 - Dymek, S. A1 - Kranzmann, Axel T1 - Corrosion behaviour of Ni-Cr-Mo-W coatings in environments containing sulfur N2 - The ferritic steel 13CrMo4-5 due to good properties with relation to attractive price is frequently use in power plants industry. According EN10028-2 this steel can be used up to 570 °C because of its creep behavior but its corrosion resistance limits the use frequently to lower temperatures, depending on gas temperature and slag formation. The corrosion test were performed in environment containing mixture of gases like: O2, COx, SOx and ashes, with elements e.g. Na, Cl, Ca, Si, C, Fe, Al. Exposure time was respectively 240 h, 1000 h and 4500 h in temperature 600 °C. The oxide scale on the 13CrMo4-5 steel was significant thicker than for In686 coating and the difference increase according for longer exposure time. The microstructure, chemical and phase composition of the oxide scales were investigated by means of a light microscope, the electron scanning and transmission microscopes (SEM,TEM) equipped with the EDS detectors. T2 - Gordon Research Conference CY - New London, New Hampshire, USA DA - 21.07.2019 KW - High temperature KW - Corrosion resistance KW - Laser cladding KW - Inconel 686 KW - Aggressive environment PY - 2019 AN - OPUS4-49358 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koclega, Damian A1 - Radziszewska, Agnieszka A1 - Kranzmann, Axel A1 - Dymek, Stanislaw T1 - The microstructure characterization of the oxide scale created on Inconel 686 clad N2 - The Ni-Cr-Mo-W alloy is characterized by the excellent high-temperature corrosion resistance, good strength and ability to work in aggressive environments. To protect the surface of the substrate 13CrMo4-5 steel against aggressive environments the Inconel 686 as clad layer was used. The corrosion process was performed in oxidizing mixture of gases like O2, COx, SOx. The second part of corrosion Experiment concerned the corrosion test of the coating in reducing atmosphere of the specified gases with ashes, which contained e.g. Na, Cl, Ca, Si, C, Fe, Al. T2 - EUROCORR 2018 CY - Crocow, Poland DA - 09.09.2018 KW - Laser cladding KW - Inconel 686 coating KW - High-temperature corrosion KW - Aggressive gases PY - 2018 AN - OPUS4-47393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -