TY - JOUR A1 - Kuner, Maximilian A1 - Lisec, Jan A1 - Picher, Marie-Idrissa A1 - Rigo, Massimo A1 - Konetzki, Jörg A1 - Haase, Hajo A1 - Koch, Matthias T1 - Development and Application of Isotope Labelled Internal Standards in a Sum Parameter Method for Ergot Alkaloid Screening of Food N2 - Ergot alkaloids are a group of toxic compounds, formed by fungi on infested grasses. In 2022, the European Commission set into effect maximum levels for the sum of the twelve major ergot alkaloids in multiple foods. To facilitate the laborious and costly individual quantification of the twelve major ergot alkaloids by HPLC–MS/MS or -FLD, we recently reported a sum parameter method (SPM) for ergot alkaloid quantification. Here, derivatization to lysergic acid hydrazide—a derivative of the mutual ergoline backbone in all ergot alkaloids—allowed simplified determination of all ergot alkaloids in flour via HPLC-FLD. For the measurement of more complex matrices like processed foods, we now developed a MS/MS-based SPM. Two internal standards (IS), isotopically labelled at different positions of the molecule, were synthesized and employed in the MS/MS-measurements. Method performance using either the 13CD3-labelled or the 15N2-labelled IS was evaluated on naturally contaminated rye and wheat flour samples as well as on processed food matrices. Employing the 13CD3-labelled IS leads to lower variances and better consistency with the reference data (obtained by the FLD-based SPM) in flour samples compared to the 15N2-labelled IS. The novel method significantly improves the measurement of ergot alkaloids in complex food matrices, due to their increased selectivity and thus lower interferences. Furthermore, the application of isotope labelled IS obviates the need for time-consuming steps like the determination of recovery rate based, matrix specific correction factors as described in the MS/MS-based European standard method for ergot alkaloid quantification (EN 17425). KW - Mycotoxins KW - Sum Parameter Method KW - Isotope Labelling KW - HPLC-MS/MS KW - Analytical Chemistry KW - Lysergic acid hydrazide PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-588582 DO - https://doi.org/10.1007/s12161-023-02553-x SN - 1936-976X VL - 17 IS - 1 SP - 119 EP - 128 PB - Springer CY - New York, NY AN - OPUS4-58858 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kuner, Maximilian A1 - Lisec, Jan A1 - Mauch, Tatjana A1 - Konetzki, J. A1 - Haase, H. A1 - Koch, Matthias T1 - Quantification of Ergot Alkaloids via Lysergic Acid Hydrazide—Development and Comparison of a Sum Parameter Screening Method N2 - Ergot alkaloids are a group of mycotoxins occurring in products derived from various grasses (e.g., rye) and have been regulated in the EU recently. The new maximum levels refer to the sum of the six most common ergot alkaloids in their two stereoisomeric forms in different food matrices. Typically, these twelve compounds are individually quantified via HPLC-MS/MS or -FLD and subsequently summed up to evaluate food safety in a time-consuming process. Since all these structures share the same ergoline backbone, we developed a novel sum parameter method (SPM) targeting all ergot alkaloids simultaneously via lysergic acid hydrazide. After extraction and clean-up, in analogy to the current European standard method EN 17425 (ESM) for ergot alkaloid quantitation, the samples were derivatized by an optimized hydrazinolysis protocol, which allowed quantitative conversion after 20 min at 100 °C. The new SPM was evaluated against another established HPLC-FLD-based method (LFGB) and the HPLC-MS/MS-based ESM using six naturally contaminated rye and wheat matrix reference materials. While the SPM provided comparable values to the ESM, LFGB showed deviating results. Determined recovery rates, limits of detection and quantification of all three employed methods confirm that the new SPM is a promising alternative to the classical approaches for ergot alkaloid screening in food. KW - Ergot alkaloids KW - Sum Parameter KW - Mycotoxins KW - Derivatization KW - Hydrazinolysis PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-573968 DO - https://doi.org/10.3390/molecules28093701 SN - 0015-2684 VL - 28 IS - 9 SP - 3701 PB - MDPI CY - Basel AN - OPUS4-57396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Koch, Matthias A1 - Wachholz, Sigrid A1 - Win, Tin T1 - Quantification of total petrol hydrocarbons (TPH) in soil by IR-spectrometry and gas chromatography - conclusions from three proficiency testing rounds N2 - Due to the utilisation of 1,1,2-trichlorotrifluoroethane (CFE) as extraction solvent the IR-spectrometric determination of total petrol hydrocarbon (TPH) in soil according to ISO/TR 11046 has been replaced by gas chromatography/flame ionisation detection (GC/FID) after extraction with a halogen-free solvent according to ISO/DIS 16703:2001. The results obtained with both methods by field laboratories in three proficiency testing (PT) rounds are compared. The consensus means obtained with GC/FID are typically 10%-20% (ranging between 0% and 25%) higher than those found with IR-spectroscopy. On the contrary, coefficients of variation (CV) are roughly double in case of GC/FID and are briefly discussed against the background of the Horwitz equation. KW - Hydrocarbons KW - Soil KW - IR spectrometry KW - Gas chromatography KW - Interlaboratory comparison PY - 2002 DO - https://doi.org/10.1007/s00769-002-0476-9 SN - 0949-1775 SN - 1432-0517 VL - 7 IS - 7 SP - 286 EP - 289 PB - Springer CY - Berlin AN - OPUS4-1627 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Lisec, Jan A1 - Koch, Matthias T1 - Changes in Black Truffle (Tuber melanosporum) Aroma during Storage under Different Conditions N2 - The enticing aroma of truffles is a key factor for their culinary value. Although all truffle species tend to be pricy, the most intensely aromatic species are the most sought after. Research into the aroma of truffles encompasses various disciplines including chemistry, biology, and sensory science. This study focusses on the chemical composition of the aroma of black truffles (Tuber melanosporum) and the changes occurring under different storage conditions. For this, truffle samples were stored under different treatments, at different temperatures, and measured over a total storage time of 12 days. Measurements of the truffle aroma profiles were taken with SPME/GC–MS at regular intervals. To handle the ample data collected, a systematic approach utilizing multivariate data analysis techniques was taken. This approach led to a vast amount of data which we made publicly available for future exploration. Results reveal the complexity of aroma changes, with 695 compounds identified, highlighting the need for a comprehensive understanding. Principal component analyses offer initial insights into truffle composition, while individual compounds may serve as markers for age (formic acid, 1-methylpropyl ester), freshness (2-Methyl-1-propanal; 1-(methylthio)-propane), freezing (tetrahydrofuran), salt treatment (1-chloropentane), or heat exposure (4-hydroxy-3-methyl-2-butanone). This research suggests that heat treatment or salt contact significantly affects truffle aroma, while freezing and cutting have less pronounced effects in comparison. The enrichment of compounds showing significant changes during storage was investigated with a metabolomic pathway analysis. The involvement of some of the enriched compounds on the pyruvate/glycolysis and sulfur pathways was shown. KW - Mass Spectrometry KW - Metabolomics KW - Tuber melanosporum KW - Truffle Aroma PY - 2024 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-601731 DO - https://doi.org/10.3390/jof10050354 VL - 10 IS - 5 SP - 1 EP - 22 PB - MDPI AN - OPUS4-60173 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Bremser, Wolfram A1 - Stephan, Ina A1 - Klein-Hartwig, Karin A1 - Rasenko, Tatjana A1 - Koch, Matthias T1 - T-2 and HT-2 toxins in oat flakes: development of a certified reference material N2 - Trichothecene mycotoxins, with T-2 and HT-2 toxins being the main representatives of the type A subgroup, are naturally and worldwide occurring contaminants frequently found in grain-based food and feed. Due to the high consumption of these products and the potential health risk associated herewith, concerns about the safety and quality of food and feed have increased over the last decades at both governmental and consumer levels. Since it is not possible to avoid their occurrence, tremendous efforts have been performed to identify and monitor mycotoxins in food and feed to make their consumption safe. However, suitable certified reference materials (CRMs) intended for quality assurance and quality control purposes are still lacking for many mycotoxin-matrix combinations. Therefore, in the framework of a European Reference Material (ERM®) project, the first CRM for T-2 and HT-2 toxin in ground oat flakes (ERM®-BC720) was developed according to the requirements of ISO Guide 35. The whole process of ERM®-BC720 development, including sample preparation, homogeneity and stability studies and value assignment, is presented. The assignment of the certified mass fractions was based upon an in-house study using high-performance liquid chromatography isotope-dilution tandem mass spectrometry. Simultaneously, an interlaboratory comparison study involving 24 expert laboratories was conducted in order to support the in-house certification study. The certified values and their corresponding expanded uncertainties (k=2) for both T-2 and HT-2 toxin in ERM®-BC720, traceable to the international system of units, are (82±4) µg kg-1 and (81±4) µg kg-1, respectively. KW - Type A trichothecenes KW - Fusarium toxins KW - Isotope-dilution mass spectrometry KW - Food analysis KW - European Reference Material KW - Quality assurance PY - 2015 DO - https://doi.org/10.1007/s00216-014-8251-4 SN - 1618-2642 SN - 1618-2650 VL - 407 IS - 11 SP - 2997 EP - 3007 PB - Springer CY - Berlin AN - OPUS4-33073 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Becker, Roland A1 - Koch, Matthias A1 - Lehnik-Habrink, Petra A1 - Nehls, Irene T1 - Quantification of polychlorinated biphenyls in plastic granulates from the recycling of cables - Reference materials and interlaboratory comparison N2 - A procedure for the quantification of the PCB marker congeners 28, 52, 101, 138, 153, 180 in plastic waste form the recycling of cables in the range of content between 0.1 mg kg-1 and 20 mg kg-1 was validated. Representative reference materials for laboratory analyses were produced using granulates from different recycling processes. The method development included aspects of grinding, sieving, homogenising as well as the comparison of extraction methods and chromatographic conditions. The validated procedure foresees grinding of the technical sample to an upper particle size limit of 0.50 mm followed by extraction with an unpolar solvent such as n-hexane and gas chromatographic determination. LOD and LOQ for individual congeners ranged between 0.01 mg kg-1 and 0.08 mg kg-1. Electron capture detection (ECD) and mass selective detection (MS) were equivalent if chromatographic conditions were appropriately selected. The application of MS was advantageous in presence of significant amounts of interfering components which have been found in some cables. Three reference materials containing the marker congeners in the range of 0.1 mg kg-1–5 mg kg-1 were submitted to a final validation intercomparison with 23 selected field laboratories using the developed method. Relative reproducibility standard deviations varied between 15% and 33%. KW - PCB KW - Waste KW - Analysis KW - Method validation KW - Standardisation PY - 2006 DO - https://doi.org/10.1016/j.chemosphere.2006.02.035 SN - 0045-6535 SN - 0366-7111 VL - 65 IS - 9 SP - 1652 EP - 1659 PB - Elsevier Science CY - Kidlington, Oxford AN - OPUS4-14050 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Resch-Genger, Ute A1 - Meermann, Björn A1 - Koch, Matthias A1 - Weller, Michael G. T1 - Editorial: Analytical methods and applications in materials and life sciences N2 - Current trends in materials and life sciences are flanked by the need to push detection limits to single molecules or single cells, enable the characterization of increasingly complex matrices or sophisticated nanostructures, speed up the time of analysis, reduce instrument complexity and costs, and improve the reliability of data. This requires suitable analytical tools such as spectroscopic, separation and imaging techniques, mass spectrometry, and hyphenated techniques as well as sensors and their adaptation to application-specific challenges in the environmental, food, consumer product, health sector, nanotechnology, and bioanalysis. Increasing concerns about health threatening known or emerging pollutants in drinking water, consumer products, and food and about the safety of nanomaterials led to a new awareness of the importance of analytical sciences. Another important driver in this direction is the increasing demand by legislation, particularly in view of the 17 sustainable development goals by the United Nations addressing clean energy, industry, and innovation, sustainable cities, clean water, and responsible consumption and production. In this respect, also the development of analytical methods that enable the characterization of material flows in production processes and support recycling concepts of precious raw materials becomes more and more relevant. In the future, this will provide the basis for greener production in the chemical industry utilizing recycled or sustainable starting materials. This makes analytical chemistry an essential player in terms of the circular economy helping to increase the sustainability of production processes. In the life sciences sector, products based on proteins, such as therapeutic and diagnostic antibodies, increase in importance. These increasingly biotechnologically produced functional biomolecules pose a high level of complexity of matrix and structural features that can be met only by highly advanced methods for separation, characterization, and detection. In addition, metrological traceability and target definition are still significant challenges for the future, particularly in the life sciences. However, innovative reference materials as required for the health and food sector and the characterization of advanced materials can only be developed when suitable analytical protocols are available. The so-called reproducibility crisis in sciences underlines the importance of improved measures of quality control for all kinds of measurements and material characterization. This calls for thorough method validation concepts, suitable reference materials, and regular interlaboratory comparisons of measurements as well as better training of scientists in analytical sciences. The important contribution of analytical sciences to these developments is highlighted by a broad collection of research papers, trend articles, and critical reviews from these different application fields. Special emphasis is dedicated to often-overlooked quality assurance and reference materials. T2 - 150 years BAM: Science with impact CY - Berlin, Germany DA - 01.01.2021 KW - Analysis KW - Life sciences KW - Analytical sciences KW - Quality assurance KW - Reference material KW - Fluorescence KW - Nanoparticle KW - Sensor KW - Material sciences KW - Pollutant KW - Environment KW - Method KW - Limit of detection KW - 150th anniversary KW - ABC KW - BAM KW - Collection KW - Editorial KW - Special issue KW - Bundesanstalt für Materialforschung und -prüfung KW - Jahrestag PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-550720 DO - https://doi.org/10.1007/s00216-022-04082-8 SN - 1618-2642 SN - 1618-2650 VL - 414 IS - Topical collection: Analytical methods and applications in the materials and life sciences SP - 4267 EP - 4268 PB - Springer CY - Berlin AN - OPUS4-55072 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Prediction of biotransformation products of the fungicide fluopyram by electrochemistry coupled online to liquid chromatography-mass spectrometry and comparison with in vitro microsomal assays N2 - Biotransformation processes of fluopyram (FLP), a new succinate dehydrogenase inhibitor (SDHI) fungicide, were investigated by electrochemistry (EC) coupled online to liquid chromatography (LC) and electrospray mass spectrometry (ESI-MS). Oxidative phase I metabolite production was achieved using an electrochemical flow-through cell equipped with a boron doped diamond (BDD) electrode. Structural elucidation and prediction of oxidative metabolism pathways were assured by retention time, isotopic patterns, fragmentation, and accurate mass measurements using EC/LC/MS, LC-MS/MS, and/or high resolution mass spectrometry (HRMS). The results obtained by EC were compared with conventional in vitro studies by incubating FLP with rat and human liver microsomes (RLM, HLM). Known phase I metabolites of FLP (benzamide, benzoic acid, 7-hydroxyl, 8-hydroxyl, 7,8-dihydroxyl FLP, lactam FLP, pyridyl acetic acid, and Z/E-olefin FLP) were successfully simulated by EC/LC/MS. New metabolites including an imide, hydroxyl lactam, and 7-hydroxyl pyridyl acetic acid oxidative metabolites were predicted for the first time in our study using EC/LC/MS and liver microsomes. We found oxidation by dechlorination to be one of the major metabolism mechanisms of FLP. Thus, our results revealed that EC/LC/MS-based metabolic elucidation was more advantageous on time and cost of analysis and enabled matrix-free detection with valuable information about the mechanisms and intermediates of metabolism processes. KW - Metabolism KW - EC/LC/MS KW - Electrochemical oxidation KW - Biotransformation KW - SDHI-fungicide PY - 2018 UR - https://link.springer.com/article/10.1007%2Fs00216-018-0933-x#citeas DO - https://doi.org/10.1007/s00216-018-0933-x SN - 1618-2650 SN - 1618-2642 VL - 410 IS - 10 SP - 2607 EP - 2617 PB - Springer CY - Heidelberg AN - OPUS4-44491 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema Fenta A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Glucosylation and Glutathione Conjugation of Chlorpyrifos and Fluopyram Metabolites Using Electrochemistry/Mass Spectrometry N2 - Xenobiotics and their reactive metabolites are conjugated with native biomolecules such as glutathione and glucoside during phase II metabolism. Toxic metabolites are usually detoxified during this step. On the other hand, these reactive species have a potential health impact by disrupting many enzymatic functions. Thus, it is crucial to understand phase II conjugation reactions of xenobiotics in order to address their fate and possible toxicity mechanisms. Additionally, conventional methods (in vivo and in vitro) have limitation due to matrix complexity and time-consuming. Hence, developing fast and matrix-free alternative method is highly demandable. In this work, oxidative phase I metabolites and reactive species of chlorpyrifos (insecticide) and fluopyram (fungicide) were electrochemically produced by using a boron-doped diamond electrode coupled online to electrospray mass spectrometry (ESI-MS). Reactive species of the substrates were trapped by biomolecules (glutathione and glucoside) and phase II conjugative metabolites were identified using liquid chromatography (LC)-MS/MS, and/or Triple time of flight (TripleTOF)-MS. Glutathione conjugates and glucosylation of chlorpyrifos, trichloropyridinol, oxon, and monohydroxyl fluopyram were identified successfully. Glutathione and glucoside were conjugated with chlorpyrifos, trichloropyridinol, and oxon by losing a neutral HCl. In the case of fluopyram, its monohydroxyl metabolite was actively conjugated with both glutathione and glucoside. In summary, seven bioconjugates of CPF and its metabolites and two bioconjugates of fluopyram metabolites were identified using electrochemistry (EC)/MS for the first time in this work. The work could be used as an alternative approach to identify glutathione and glucosylation conjugation reactions of other organic compounds too. It is important, especially to predict phase II conjugation within a short time and matrix-free environment. KW - Pesticide KW - Bioconjugation KW - Oxidative metabolism KW - EC/MS PY - 2019 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-475932 DO - https://doi.org/10.3390/molecules24050898 VL - 24 IS - 5 SP - 898 EP - 910 PB - MDPI AN - OPUS4-47593 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema F. A1 - Byrne, Liam A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Investigation of chlorpyrifos and its transformation products in fruits and spices by combining electrochemistry and liquid chromatography coupled to tandem mass spectrometry N2 - The identification of transformation products (TPs) of pesticides in food is a crucial task difficult to tackle, due to the lack of standards. In this work, we present a novel methodology to synthesize five main TP standards of the insecticide chlorpyrifos (CPF) and to investigate their occurrence in selected fruits and spices. TPs were electrochemically (EC) synthesized using a boron-doped diamond electrode (BDD) and identified by EC coupled online to mass spectrometry, LC-MS/MS, and high-resolution mass spectrometry. CPF and its TPs were analyzed in the food samples by LC-MS/MS on multiple reaction monitoring (MRM) after dispersive solid-phase extraction. A good recovery of 83–103% for CPF and 65–85% for TPs was obtained. Matrix effects, which cause signal suppression, ranged between 81 to 95% for all targeted analytes. The limit of detection and quantification for CPF were 1.6–1.9 and 4.9–5.7 μg/kg, respectively. Among investigated samples, CPF was determined in fresh lemon (104 μg/kg), fenugreek seed (40 μg/kg), and black pepper (31 μg/kg). CPF content in all samples was lower than the EU maximum residue level (MRL). The most frequently detected TPs were diethylthiophosphate and diethylphosphate. Other TPs, CPF oxon and trichloropyridinol, were also detected. Hence, EC is a versatile tool to synthesize TP standards which enables the determination of contaminants and residues in foodstuffs even if no commercial standards are available. KW - Transformation product KW - Electrochemistry KW - QuEChERS KW - LC-MS/MS KW - Photodegradation KW - Foodstuffs PY - 2018 UR - https://link.springer.com/article/10.1007/s12161-018-1245-7#citeas DO - https://doi.org/10.1007/s12161-018-1245-7 SN - 1936-9751 SN - 1936-976X VL - 11 IS - 10 SP - 2657 EP - 2665 PB - Springer AN - OPUS4-45834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -