TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome N2 - The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary Medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction. KW - Salinomycin KW - Ionophore antibiotics KW - Transformation product KW - Electrochemistry KW - Rat/human liver microsomes KW - HRMS PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-542543 DO - https://doi.org/10.3390/antibiotics11020155 SN - 2079-6382 VL - 11 IS - 2 SP - 155 PB - MDPI CY - Basel AN - OPUS4-54254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sommerfeld, Thomas A1 - Jung, Christian A1 - Riedel, Juliane A1 - Mauch, Tatjana A1 - Sauer, Andreas A1 - Koch, Matthias T1 - Development of a certified reference material for the determination of polycyclic aromatic hydrocarbons (PAHs) in rubber toy N2 - Polycyclic aromatic hydrocarbons (PAHs) are a large group of priority organic pollutants, which contaminate environmental compartments, food, and consumer products as well. Due to their frequent occurrence associated with elevated Levels of PAHs, plastic and rubber parts of consumer products and toys are particular sources of exposure. Although European maximum levels exist for eight carcinogenic PAHs in consumer products and toys according to REACH Regulation (EC) No. 1907/2006, certified reference materials (CRM) are still not available. To overcome this lack, the first CRM for the determination of PAHs in rubber toys (BAM-B001) was developed according to the requirements of ISO Guide 35. The whole process of CRM development including preparation, homogeneity and stability studies, and value assignment is presented. The assignment of the certified mass fractions was based upon in-house study at BAM using stable isotope Dilution analysis (SIDA) gas chromatography mass spectrometry (GC–MS). The obtained values were confirmed by the results of two interlaboratory comparison (ILC) studies with more than 50 expert laboratories from Germany and China. The mass fractions of 14 PAHs including all REACH and GS mark regulated compounds were certified ranging between 0.2 and 15.4 mg/ kg accompanied by expanded uncertainties (coverage factor k = 2). In addition, informative values were determined for 4 PAHs, mainly due to higher uncertainties and/or lack of ILC data for confirmation. BAM-B001 is intended for analytical quality control particularly based on the AfPS GS 2019:01 PAK method and contributes to improve the chemical safety of consumer products including toys. KW - PAHs KW - Consumer Products KW - Toys KW - Chemical Safety KW - Certified reference material KW - Quality assurance PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-539920 DO - https://doi.org/10.1007/s00216-021-03796-5 VL - 414 IS - 15 SP - 4369 EP - 4378 PB - Springer AN - OPUS4-53992 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sebald, M. A1 - Gebauer, J. A1 - Koch, Matthias T1 - Diastereoselective synthesis of (±)-trichodiene and (±)-trichodiene-D3 as analytical standards for the on-site quantification of trichothecenes N2 - The ubiquitous Fusarium genus is responsible for the spoilage of vast amounts of cereals and fruits. Besides the economic damage, the danger to human and animal health by the concomitant exposure to mycotoxins represents a serious problem. A large number of Fusarium species produce a variety of different mycotoxins of which the class of trichothecenes are of particular importance due to their toxicity. Being identified as the common volatile precursor during the biosynthesis of trichothecenes, (−)-trichodiene (TD) is considered to be a biomarker for the respective mycotoxin content in food samples. We postulated that the development of a non-invasive, on-site GC-IMS method for the quantification of (−)-trichodiene supplemented with a stationary SIDA headspace GC-MS reference method would allow circumventing the laborious and expensive analyses of individual trichothecenes in large cereal samples. In this work we present the syntheses of the required native calibration standard and an isotope labeled (TD-D3) internal standard. KW - Mycotoxins KW - Volatile marker KW - Food analysis KW - Screening method KW - Mobile analysis PY - 2021 DO - https://doi.org/10.1039/d1ob01778k VL - 19 IS - 45 SP - 9872 EP - 9879 PB - RSC AN - OPUS4-53993 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Sebald, M. A1 - Gebauer, J. A1 - Koch, Matthias T1 - Concise Synthesis of Alternariol and Alternariol-9-monomethyl ether as well as their D3-Isotopologues N2 - Abstract Alternariol (AOH) and alternariol-9-monomethyl ether (AME) are two secondary metabolites of Alternaria fungi which can be found in various foodstuff like tomatoes, nuts, and grains. Due to their toxicity and potential mutagenic activity the need for the development of high-throughput methods for the supervision of AOH- and AME-levels is of increasing interest. As the availability of both native and labeled AOH and AME analytical standards is very limited we herein wish to present a novel concise approach towards their synthesis employing a ruthenium-catalyzed ortho-arylation as the key step. Finally, we demonstrate their suitability as internal standards in stable-isotope dilution assay (SIDA)-HPLC-MS/MS analysis commonly used for the quantification of the natural products in food and feed. KW - Mycotoxins KW - Food Analysis KW - Emerging contaminants PY - 2021 DO - https://doi.org/10.1055/a-1698-8328 SN - 0039-7881 VL - 54 IS - 19 SP - 4285 EP - 4293 PB - Thieme AN - OPUS4-53994 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Bliesener, Lilly A1 - Weiss, Tilman A1 - Koch, Matthias T1 - Marker Substances in the Aroma of Truffles N2 - The aim of this study was to identify specific truffle marker substances within the truffle aroma. The aroma profile of different truffle species was analyzed using static headspace sampling with gas chromatography mass spectrometry analysis (SHS/GC-MS). Possible marker substances were identified, taking the additional literature into account. The selected marker substances were tested in an experiment with 19 truffle dogs. The hypothesis “If trained truffle dogs recognize the substances as supposed truffles in the context of an experiment, they can be regarded as specific” was made. As it would be nearly impossible to investigate every other possible emitter of the same compounds to determine their specificity, this hypothesis was a reasonable approximation. We were interested in the question of what it is the dogs actually search for on a chemical level and whether we can link their ability to find truffles to one or more specific marker substances. The results of the dog experiment are not as unambiguous as could have been expected based on the SHS/GC-MS measurements. Presumably, the truffle aroma is mainly characterized and perceived by dogs by dimethyl sulfide and dimethyl disulfide. However, as dogs are living beings and not analytical instruments, it seems unavoidable that one must live with some degree of uncertainty regarding these results. KW - Truffle KW - Volatile organic compounds; KW - Gas chromatography KW - Mass spectrometry KW - Canine olfactometry PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-556116 DO - https://doi.org/10.3390/molecules27165169 SN - 1420-3049 VL - 27 IS - 16 SP - 1 EP - 19 PB - MDPI CY - Basel AN - OPUS4-55611 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Koch, Matthias A1 - Mauch, Tatjana A1 - Riedel, Juliane T1 - Development of a Hydrazine-Based Solid-Phase Extraction and Clean-Up Method for Highly Selective Quantification of Zearalenone in Edible Vegetable Oils by HPLC-FLD N2 - Rapid, cost-efficient, and eco-friendly methods are desired today for routine analysis of the Fusarium mycotoxin zearalenone (ZEN) in edible vegetable oils. Liquid chromatography with fluorescence detection (HPLC-FLD) is commonly used to reliably control the specified ZEN maximum levels, which requires efficient sample clean-up to avoid matrix interferences. Therefore, a highly selective extraction and clean-up method based on reversible covalent hydrazine chemistry (RCHC) using hydrazine-functionalized silica was developed. This efficient solid-phase extraction (SPE) involves reversible hydrazone formation of ZEN with the hydrazine moiety covalently bound to a solid phase. Optimal conditions were achieved with 1 mL SPE cartridges filled with 400 mg of hydrazine-functionalized silica. The developed RCHC-SPE method was validated in an interlaboratory comparison study (ILC) with twelve participants analyzing six edible vegetable oils with a focus on maize oils. The derived method parameters (ZEN recovery 83%, repeatability 7.0%, and reproducibility 18%) meet the performance criteria of Commission Regulation (EC) No 401/2006. The developed RCHC-SPE-based HPLC-FLD method allows the reliable quantification of ZEN in the range of 47–494 μg/kg for different types of edible vegetable oils, also for matrix-reach native oils. Due to the high efficiency, the significantly reduced matrix load helps to extend the lifetime of analytical equipment. Furthermore, the re-useability of the RCHC-SPE cartridges contributes to an eco-friendly approach and reduced analysis costs. To our knowledge, this is the first report on ZEN quantification in edible vegetable oils based on manual RCHC-SPE cartridges. Due to its high performance, the developed RCHC-SPE method is a promising alternative to the current European standard method EN 16924:2017 (HPLC-FLD part). KW - Mycotoxin KW - Food KW - Reversible covalent hydrazine chemistry (RCHC) KW - Quantitative determination PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-554812 DO - https://doi.org/10.3390/toxins14080549 VL - 14 IS - 8 PB - MDPI CY - Basel AN - OPUS4-55481 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Koch, Matthias T1 - Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS N2 - Rationale: Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). Methods: Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. Results: The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+; 2Na+ K+; NaNH4 +; KNH4 +). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+-complexes, we identified LM-TPs as K+-complexes. Conclusion: We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS. KW - Mass Spectrometry KW - Electrochemistry KW - ECR KW - Lasalocid KW - Ionophore KW - Transformation products PY - 2022 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-553919 DO - https://doi.org/10.1002/rcm.9349 VL - 36 IS - 18 SP - 1 EP - 10 PB - Wiley online library AN - OPUS4-55391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Epping, Ruben A1 - Koch, Matthias T1 - On-Site Detection of Volatile Organic Compounds (VOCs) N2 - Volatile organic compounds (VOCs) are of interest in many different fields. Among them are food and fragrance analysis, environmental and atmospheric research, industrial applications, security or medical and life science. In the past, the characterization of these compounds was mostly performed via sample collection and off-site analysis with gas chromatography coupled to mass spectrometry (GC-MS) as the gold standard. While powerful, this method also has several drawbacks such as being slow, expensive, and demanding on the user. For decades, intense research has been dedicated to find methods for fast VOC analysis on-site with time and spatial resolution. We present the working principles of the most important, utilized, and researched technologies for this purpose and highlight important publications from the last five years. In this overview, non-selective gas sensors, electronic noses, spectroscopic methods, miniaturized gas chromatography, ion mobility spectrometry and direct injection mass spectrometry are covered. The advantages and limitations of the different methods are compared. Finally, we give our outlook into the future progression of this field of research. KW - Volatile organic compounds KW - On-site detection KW - Mobile analytics KW - Sensors PY - 2023 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-570885 DO - https://doi.org/10.3390/molecules28041598 VL - 28 IS - 4 SP - 1 EP - 19 PB - MDPI CY - Basel, Switzerland AN - OPUS4-57088 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - RPRT A1 - Recknagel, Christoph A1 - Eichler, Antje A1 - Koch, Matthias A1 - Proske, Matthias A1 - Huth, Christian T1 - Reflexkörper und Griffigkeitsmittel in Nachstreumittelgemischen für Markierungssysteme - Entwicklung von Prüfmethoden zur Separation sowie Analyse und Identifikation der Beschichtung (Coating/Treatment) von Reflexkörpern KW - Sicherheit der Verkehrsinfrastruktur KW - Fahrbahnmarkierungen PY - 2014 SN - 978-3-95606-061-8 SN - 0943-9331 IS - V 232 SP - 1 EP - 166 PB - Fachverlag NW in der Carl Schünemann Verlag GmbH CY - Bergisch Gladbach AN - OPUS4-30386 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drzymala, Sarah A1 - Herrmann, Antje A1 - Maul, Ronald A1 - Pfeifer, Dietmar A1 - Garbe, L.-A. A1 - Koch, Matthias T1 - In vitro phase I metabolism of cis-zearalenone N2 - The present study investigates the in vitro phase I metabolism of cis-zearalenone (cis-ZEN) in rat liver microsomes and human liver microsomes. cis-ZEN is an often ignored isomer of the trans-configured Fusarium mycotoxin zearalenone (trans-ZEN). Upon the influence of (UV-) light, trans-ZEN isomerizes to cis-ZEN. Therefore, cis-ZEN is also present in food and feed. The aim of our study was to evaluate the in vitro phase I metabolism of cis-ZEN in comparison to that of trans-ZEN. As a result, an extensive metabolization of cis-ZEN is observed for rat and human liver microsomes as analyzed by HPLC-MS/MS and high-resolution MS. Kinetic investigations based on the substrate depletion approach showed no significant difference in rate constants and half-lives for cis- and trans-ZEN in rat microsomes. In contrast, cis-ZEN was depleted about 1.4-fold faster than trans-ZEN in human microsomes. The metabolite pattern of cis-ZEN revealed a total of 10 phase I metabolites. Its reduction products, α- and β-cis-zearalenol (α- and β-cis-ZEL), were found as metabolites in both species, with α-cis-ZEL being a major metabolite in rat liver microsomes. Both compounds were identified by co-chromatography with synthesized authentic standards. A further major metabolite in rat microsomes was monohydroxylated cis-ZEN. In human microsomes, monohydroxylated cis-ZEN is the single dominant peak of the metabolite profile. Our study discloses three metabolic pathways for cis-ZEN: reduction of the keto-group, monohydroxylation, and a combination of both. Because these routes have been reported for trans-ZEN, we conclude that the phase I metabolism of cis-ZEN is essentially similar to that of its trans isomer. As trans-ZEN is prone to metabolic activation, leading to the formation of more estrogenic metabolites, the novel metabolites of cis-ZEN reported in this study, in particular α-cis-ZEL, might also show higher estrogenicity. KW - Cis-ZEN KW - Phase I metabolism KW - LC-MS/MS KW - HRMS KW - Depletion kinetics PY - 2014 DO - https://doi.org/10.1021/tx500312g SN - 0893-228X SN - 1520-5010 VL - 27 IS - 11 SP - 1972 EP - 1978 PB - Soc. CY - Washington, DC, USA AN - OPUS4-32071 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Gebauer, J. A1 - Werneburg, Martina A1 - Koch, Matthias T1 - Improved synthesis of (+-)-trichodiene - a volatile marker for trichothecene mycotoxins N2 - Trichodiene is the first and only volatile intermediate in the biosynthesis of Fusarium mycotoxins and its detection in the gas-phase might therefore be of potential interest as a marker for food safety analysis. We herein present an improved diastereoselective synthesis of trichodiene which can be used as an analytical standard for a headspace gas chromatography / mass spectrometry method to be developed. KW - Trichodiene KW - Trichothecenes KW - Mycotoxins KW - Fusarium KW - Food safety KW - Synthesis PY - 2014 SN - 1934-578X SN - 1555-9475 VL - 9 IS - 6 SP - 741 EP - 744 PB - NPC CY - Westerville, Ohio, USA AN - OPUS4-30909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kittler, Katrin A1 - Hoffmann, Holger A1 - Lindemann, Franziska A1 - Koch, Matthias A1 - Rohn, S. A1 - Maul, Ronald T1 - Biosynthesis of 15N-labeled cylindrospermopsin and its application as internal standard in stable isotope dilution analysis N2 - Cylindrospermopsin (CYN) is a cyanobacterial toxin associated with human and animal poisonings. Due to its toxicity in combination with its widespread occurrence, the development of reliable methods for selective, sensitive detection and accurate quantification is mandatory. Liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis using stable isotope dilution analysis (SIDA) represents an ideal tool for this purpose. U-[15N5]-CYN was synthesized by culturing Aphanizomenon flos-aquae in Na15NO3-containing cyanobacteria growth medium followed by a cleanup using graphitized carbon black columns and mass spectrometric characterization. Subsequently, a SIDA-LC-MS/MS method for the quantification of CYN in freshwater and Brassica matrices was developed showing satisfactory performance data. The recovery ranged between 98 and 103 %; the limit of quantification was 15 ng/L in freshwater and 50 µg/kg dry weight in Brassica samples. The novel SIDA was applied for CYN determination in real freshwater samples as well as in kale and in vegetable mustard exposed to toxin-containing irrigation water. Two of the freshwater samples taken from German lakes were found to be CYN-contaminated above limit of quantification (17.9 and 60.8 ng/L). CYN is systemically available to the examined vegetable species after exposure of the rootstock leading to CYN mass fractions in kale and vegetable mustard leaves of 15.0 µg/kg fresh weight and 23.9 µg/kg fresh weight, respectively. CYN measurements in both matrices are exemplary for the versatile applicability of the developed method in environmental analysis. KW - Cyanotoxin KW - Quantification KW - Surface water KW - Vegetable plants KW - SIDA KW - HPLC-MS/MS PY - 2014 DO - https://doi.org/10.1007/s00216-014-8026-y SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 24 SP - 5765 EP - 5774 PB - Springer CY - Berlin AN - OPUS4-31566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Matthias A1 - Rasenko, Tatjana A1 - Klein-Hartwig, Karin A1 - Riedel, Juliane A1 - Köppen, Robert T1 - Mykotoxin-Referenzmaterialien - Ein Beitrag zu Qualitätssicherung und Lebensmittelsicherheit T2 - 43. Deutscher Lebsnmittelchemikertag CY - Giessen, Germany DA - 2014-09-22 PY - 2014 AN - OPUS4-31514 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Brodehl, Antje A1 - Möller, Anne A1 - Kunte, Hans-Jörg A1 - Koch, Matthias A1 - Maul, Ronald T1 - Biotransformation of the mycotoxin zearalenone by fungi of the genera Rhizopus and Aspergillus N2 - Zearalenone (ZEN) is a nonsteroidal estrogenic mycotoxin biosynthesized by various Fusarium fungi. These fungal species frequently infest grains; therefore, ZEN represents a common contaminant in cereal products. The biotransformation of ZEN differs significantly from species to species, and several metabolites are known to be formed by animals, plants, and microorganisms. The aim of the present study was to investigate the microbial conversion of ZEN by species of the genera Rhizopus and Aspergillus representing relevant fungi for food processing (e.g. fermentation). To monitor the ZEN metabolism, ZEN was added to liquid cultures of the different fungal species. After a period of 3 days, the media were analyzed by HPLC-MS/MS for metabolite formation. Two Aspergillus oryzae strains and all seven Rhizopus species were able to convert ZEN into various metabolites, including ZEN-14-sulfate as well as ZEN-O-14- and ZEN-O-16-glucoside. Microbial transformation of ZEN into the significantly more estrogenic α-zearalenol (α-ZEL) was also observed. Additionally, a novel fungal metabolite, α-ZEL-sulfate, was detected. Semi-quantification of the main metabolites indicates that more than 50% of initial ZEN may be modified. The results show that fungal strains have the potential to convert ZEN into various metabolites leading to a masking of the toxin, for example in fermented food. KW - Microbial conversion KW - Metabolites KW - Fermentation KW - Alpha-zearalenol KW - Conjugation KW - Mycotoxin biotransformation KW - Zearalenone-sulfate PY - 2014 DO - https://doi.org/10.1111/1574-6968.12586 SN - 0378-1097 SN - 1574-6968 VL - 359 IS - 1 SP - 124 EP - 130 PB - Wiley-Blackwell CY - Malden, Mass., USA AN - OPUS4-31636 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Maul, Ronald A1 - Pielhau, Ramona A1 - Koch, Matthias T1 - Evaluation of an extraction method and spin column cleanup procedure for Fusarium mycotoxins and their masked derivatives from grain matrix N2 - Fusarium mycotoxins in foodstuffs at levels in violation of allowed legal limits belong to the most frequently occurring type of food contamination. Out of the large variety of known mycotoxins, deoxynivalenol (DON), zearalenone (ZEN), and the T-toxins are the most prevalent and are responsible for extensive and recurring economic damage. For ensuring consumer safety, it is required to continually identify faster, simpler and more reliable analytical methodologies. In the present work, miniaturized centrifugation (spin) columns for the extraction of mycotoxins from grain samples were investigated, with a focus on matrix removal, applicability of different extraction solvents, and recovery of mycotoxin. The method was further extended to the extraction of naturally occurring DON and ZEN conjugates (masked mycotoxins). The spin column method was observed to routinely provide a total matrix reduction of >90% from typical wheat samples in a single centrifugation step. The use of H2O/ACN (20/80; v/v) as an extraction solvent provided non-masked DON, ZEN and T-toxin recoveries of greater than 80%. For the masked DON and ZEN conjugates (DON-3-glucoside and ZEN-14-sulfate), recoveries were lower. Overall, the evaluated miniaturized spin column procedure enabled rapid loss-free extraction of unconjugated mycotoxins from conventional grain matrix and a significantly reduced matrix load in the extracts. KW - Fusarium mycotoxins KW - Spin-columns KW - Cleanup effectiveness KW - Masked mycotoxins KW - Recovery rate PY - 2014 DO - https://doi.org/10.1016/j.foodcont.2013.12.003 SN - 0956-7135 VL - 40 SP - 151 EP - 156 PB - Elsevier CY - Amsterdam AN - OPUS4-31609 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Köppen, Robert A1 - Sulyok, M. A1 - Koch, Matthias A1 - Krska, R. A1 - Schuhmacher, R. T1 - Entwicklung und Validierung einer Methode zur exakten Bestimmung von gesetzlich geregelten Mykotoxinen mittels Isotopenverdünnung-Massenspektrometrie - Erste Ergebnisse - KW - Mycotoxins KW - Measurement uncertainty KW - ID-HPLC-MS/MS KW - Foods KW - Validation PY - 2009 SN - 1811-7317 IS - 7 SP - 85 EP - 91 PB - Arbeitsgemeinschaft für Lebensmittel-, Veterinär- u. Agrarwesen (ALVA) CY - Wien AN - OPUS4-19575 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Matthias A1 - Bremser, Wolfram A1 - Köppen, Robert A1 - Krüger, Rita A1 - Siegel, David A1 - Nehls, Irene T1 - Mycotoxins and Acrylamide in Foods - New Reference Materials T2 - BERM-12 CY - Oxford, England DA - 2009-07-07 PY - 2009 AN - OPUS4-19285 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Koch, Matthias A1 - Bremser, Wolfram A1 - Köppen, Robert A1 - Krüger, Rita A1 - Nehls, Irene T1 - Ochratoxin in Kaffee - Zertifizierung eines Referenzmaterials aus dem Bereich Lebensmittel T2 - 15. Kolloquium EUROLAB-Deutschland, BAM CY - Berlin, Germany DA - 2009-04-03 PY - 2009 AN - OPUS4-19286 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Koch, Matthias A1 - Emmerling, Franziska A1 - Nehls, Irene T1 - Deacetyl tenuazonic acid KW - Deacetyl tenuazonic acid KW - X-ray single crystal diffraction KW - Crystal structure PY - 2009 DO - https://doi.org/10.1107/S1600536809015372 SN - 1600-5368 VL - 65 IS - 6 SP - o1201 PB - Munksgaard CY - Copenhagen AN - OPUS4-19429 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Siegel, David A1 - Rasenko, Tatjana A1 - Koch, Matthias A1 - Nehls, Irene T1 - Determination of the Alternaria mycotoxin tenuazonic acid in cereals by high-performance liquid chromatography-electrospray ionization ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine N2 - Tenuazonic acid (TA) is a major Alternaria mycotoxin. In the present work a novel approach for the detection of TA in cereals by liquid chromatography–ion-trap multistage mass spectrometry after derivatization with 2,4-dinitrophenylhydrazine is described. The product of the derivatization reaction and its major MS2 fragments were characterised by Fourier transform-ion cyclotron resonance tandem mass spectrometry. Without preconcentration, the established method features a limit of detection of 10 µg/kg using 2 g of sample in a rapid workup procedure. Accuracy, precision and linearity were evaluated in the working range of 50–5000 µg/kg. TA was detected in 13 and quantified in 3 out of 27 cereal samples obtained from a local supermarket, the average content being 49 µg/kg (highest incidence: 851 ± 41 µg/kg). KW - Tenuazonic acid KW - 2,4-Dinitrophenylhydrazine KW - Derivatization KW - Liquid chromatography-electrospray ionization ion-trap multistage mass spectrome KW - Cereals PY - 2009 DO - https://doi.org/10.1016/j.chroma.2009.03.063 SN - 0021-9673 VL - 1216 IS - 21 SP - 4582 EP - 4588 PB - Elsevier CY - Amsterdam AN - OPUS4-19382 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -