TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - LC-HRMS-Based Identification of Transformation Products of the Drug Salinomycin Generated by Electrochemistry and Liver Microsome N2 - The drug salinomycin (SAL) is a polyether antibiotic and used in veterinary Medicine as coccidiostat and growth promoter. Recently, SAL was suggested as a potential anticancer drug. However, transformation products (TPs) resulting from metabolic and environmental degradation of SAL are incompletely known and structural information is missing. In this study, we therefore systematically investigated the formation and identification of SAL derived TPs using electrochemistry (EC) in an electrochemical reactor and rat and human liver microsome incubation (RLM and HLM) as TP generating methods. Liquid chromatography (LC) coupled to high-resolution mass spectrometry (HRMS) was applied to determine accurate masses in a suspected target analysis to identify TPs and to deduce occurring modification reactions of derived TPs. A total of 14 new, structurally different TPs were found (two EC-TPs, five RLM-TPs, and 11 HLM-TPs). The main modification reactions are decarbonylation for EC-TPs and oxidation (hydroxylation) for RLM/HLM-TPs. Of particular interest are potassium-based TPs identified after liver microsome incubation because these might have been overlooked or declared as oxidated sodium adducts in previous, non-HRMS-based studies due to the small mass difference between K and O + Na of 21 mDa. The MS fragmentation pattern of TPs was used to predict the position of identified modifications in the SAL molecule. The obtained knowledge regarding transformation reactions and novel TPs of SAL will contribute to elucidate SAL-metabolites with regards to structural prediction. KW - Salinomycin KW - Ionophore antibiotics KW - Transformation product KW - Electrochemistry KW - Rat/human liver microsomes KW - HRMS PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-542543 SN - 2079-6382 VL - 11 IS - 2 SP - 155 PB - MDPI CY - Basel AN - OPUS4-54254 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Knoche, Lisa A1 - Lisec, Jan A1 - Koch, Matthias T1 - Analysis of electrochemical and liver microsomal transformation products of lasalocid by LC/HRMS N2 - Rationale: Lasalocid (LAS), an ionophore, is used in cattle and poultry farming as feed additive for its antibiotic and growth-promoting properties. Literature on transformation products (TP) resulting from LAS degradation is limited. So far, only hydroxylation is found to occur as the metabolic reaction during the LAS degradation. To investigate potential TPs of LAS, we used electrochemistry (EC) and liver microsome (LM) assays to synthesize TPs, which were identified using liquid chromatography high-resolution mass spectrometry (LC/HRMS). Methods: Electrochemically produced TPs were analyzed online by direct coupling of the electrochemical cell to the electrospray ionization (ESI) source of a Sciex Triple-TOF high resolution mass spectrometer. Then, EC-treated LAS solution was collected and analyzed offline using LC/HRMS to confirm stable TPs and improve their annotation with a chemical structure due to informative MS/MS spectra. In a complementary approach, TPs formed by rat and human microsomal incubation were investigated using LC/HRMS. The resulting data were used to investigate LAS modification reactions and elucidate the chemical structure of obtained TPs. Results: The online measurements identified a broad variety of TPs, resulting from modification reactions like (de-)hydrogenation, hydration, methylation, oxidation as well as adduct formation with methanol. We consistently observed different ion complexations of LAS and LAS-TPs (Na+; 2Na+ K+; NaNH4 +; KNH4 +). Two stable methylated EC-TPs were found, structurally annotated, and assigned to a likely modification reaction. Using LM incubation, seven TPs were formed, mostly by oxidation/hydroxylation. After the identification of LM-TPs as Na+-complexes, we identified LM-TPs as K+-complexes. Conclusion: We identified and characterized TPs of LAS using EC- and LM-based methods. Moreover, we found different ion complexes of LAS-based TPs. This knowledge, especially the different ion complexes, may help elucidate the metabolic and environmental degradation pathways of LAS. KW - Mass Spectrometry KW - Electrochemistry KW - ECR KW - Lasalocid KW - Ionophore KW - Transformation products PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-553919 VL - 36 IS - 18 SP - 1 EP - 10 PB - Wiley online library AN - OPUS4-55391 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Lisec, Jan A1 - Schwerdtle, T. A1 - Koch, Matthias T1 - Prediction of transformation products of monensin by electrochemistry compared to microsomal assay and hydrolysis N2 - The knowledge of transformation pathways and identification of transformation products (TPs) of veterinary drugs is important for animal health, food, and environmental matters. The active agent Monensin (MON) belongs to the ionophore antibiotics and is widely used as a veterinary drug against coccidiosis in broiler farming. However, no electrochemically (EC) generated TPs of MON have been described so far. In this study, the online coupling of EC and mass spectrometry (MS) was used for the generation of oxidative TPs. EC-conditions were optimized with respect to working electrode material, solvent, modifier, and potential polarity. Subsequent LC/HRMS (liquid chromatography/high resolution mass spectrometry) and MS/MS experiments were performed to identify the structures of derived TPs by a suspected target analysis. The obtained EC-results were compared to TPs observed in metabolism tests with microsomes and hydrolysis experiments of MON. Five previously undescribed TPs of MON were identified in our EC/MS based study and one TP, which was already known from literature and found by a microsomal assay, could be confirmed. Two and three further TPs were found as products in microsomal tests and following hydrolysis, respectively. We found decarboxylation, O-demethylation and acid-catalyzed ring-opening reactions to be the major mechanisms of MON transformation. KW - Transformation products KW - Monensin KW - Veterinary drugs KW - Electrochemistry KW - Hydrolysis KW - LC/HRMS PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-485689 SN - 1420-3049 VL - 24 IS - 15 SP - 2732, 1 EP - 12 PB - MDPI CY - Basel AN - OPUS4-48568 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Haase, H. A1 - Koch, Matthias T1 - Hydroxylation and dimerization of zearalenone: comparison of chemical, enzymatic and electrochemical oxidation methods N2 - Investigations of the metabolic pathway of mycotoxins by microsomal techniques are often laborious, causing an increasing demand for easy and rapid simulation methods. Thus, the non-microsomal oxidation technique of electrochemistry coupled online to mass spectrometry (EC/MS) was applied to simulate phase I biotransformation of the Fusarium mycotoxin zearalenone (ZEA). The obtained transformation products were identified by high resolution mass spectrometry (FT-ICR) and HPLC-MS/MS. Transformation products (TPs) from EC/MS were compared to those of other oxidative methods such as Fenton-like and Ce(IV) reactions and metabolites derived from in vitro assays (human and rat liver microsomes). Electrochemical oxidization of ZEA was achieved by applying a potential between 0 and 2,500 mV vs. Pd/H2 using a flow-through cell with a boron-doped diamond working electrode. Several mono-hydroxylated TPs were generated by EC/MS and Fenton-like reaction, which could also be found in microsomal in vitro assays. EC and Ce(IV) led to the formation of structurally different ZEA dimers and dimeric quinones probably connected over covalent biaryl C-C and C-O-C bonds. Although the dimerization of phenolic compounds is often observed in natural processes, ZEA dimers have not yet been reported. This is the first report on the formation of stable ZEA dimers and their related quinones. The tested non-microsomal methods, in particular EC/MS, could be useful in order to predict the biotransformation products of mycotoxins, even in cases where one to one simulation is not always feasible. KW - Electrochemistry KW - Zearalenone KW - Dimer PY - 2017 U6 - https://doi.org/10.3920/WMJ2017.2213 SN - 1875-0710 SN - 1875-0796 VL - 10 IS - 4 SP - 297 EP - 307 PB - Wageningen Academic Publishers AN - OPUS4-43393 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Keller, Julia A1 - Haase, Hajo A1 - Koch, Matthias T1 - Electrochemical simulation of biotransformation reactions of citrinin and dihydroergocristine compared to UV irradiation and Fenton-like reaction N2 - Mycotoxins occur widely in foodstuffs and cause a variety of mold-related health risks to humans and animals. Elucidation of the metabolic fate of mycotoxins and the growing number of newly discovered mycotoxins have enhanced the demand for fast and reliable simulation methods. The viability of electrochemistry coupled with mass spectrometry (EC/ESI-MS), Fenton-like oxidation, and UV irradiation for the simulation of oxidative phase I metabolism of the mycotoxins citrinin (CIT) and dihydroergocristine (DHEC) was investigated. The specific reaction products are compared with metabolites produced by human and rat liver microsomes in vitro. Depending on the applied potential between 0 and 2000 mV vs. Pd/H-2 by using a flow-through cell, CIT and DHEC are oxidized to various products. Besides dehydrogenation and dealkylation reactions, several hydroxylated DHEC and CIT species are produced by EC and Fenton-like reaction, separated and analyzed by LC-MS/MS and ESI-HRMS. Compared to reaction products from performed microsomal incubations, several mono- and dihydroxylated DHEC species were found to be similar to the reaction products of EC, Fenton-like reaction, and UV-induced oxidation. Consequentially, nonmicrosomal efficient and economic simulation techniques can be useful in early-stage metabolic studies, even if one-to-one simulation is not always feasible. KW - Mycotoxins KW - In vitro KW - Electrochemistry KW - Oxidation PY - 2017 U6 - https://doi.org/10.1007/s00216-017-0350-6 SN - 1618-2642 VL - 409 IS - 16 SP - 4037 EP - 4045 PB - Springer CY - Heidelberg AN - OPUS4-40492 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kotthoff, Lisa A1 - Keller, Julia A1 - Lörchner, Dominique A1 - Mekonnen, Tessema F. A1 - Koch, Matthias T1 - Transformation products of organic contaminants and residues - Overview of current simulation methods N2 - The formation of transformation products (TPs) from contaminants and residues is becoming an increasing focus of scientific community. All organic compounds can form different TPs, thus demonstrating the complexity and interdisciplinarity of this topic. The properties of TPs could stand in relation to the unchanged substance or be more harmful and persistent. To get important information about the generated TPs, methods are needed to simulate natural and manmade transformation processes. Current tools are based on metabolism studies, photochemical methods, electrochemical methods, and Fenton's reagent. Finally, most transformation processes are based on redox reactions. This review aims to compare these methods for structurally different compounds. The groups of pesticides, pharmaceuticals, brominated flame retardants, and mycotoxins were selected as important residues/contaminants relating to their worldwide occurrence and impact to health, food, and environmental safety issues. Thus, there is an increasing need for investigation of transformation processes and identification of TPs by fast and reliable methods. KW - Transformation product KW - Electrochemistry KW - Photochemistry KW - Fenton’s reagent PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-474108 SN - 1420-3049 VL - 24 IS - 4 SP - 753, 1 EP - 23 PB - MDPI CY - Basel AN - OPUS4-47410 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Temgoua Tonleu, Ranil C. A1 - Koch, Matthias T1 - Simulation of the Environmental Degradation of TBBPA by EC-LC-MS N2 - Oxidative degradation processes of tetrabromobisphenol A (TBBPA), a brominated flame retardant (BFR) in wood, plastics and electronics, were investigated by electrochemistry (EC) coupled online to electrospray ionization mass spectrometry (ESI/MS). Oxidative phase I and II metabolites production was achieved using an electrochemical flow-through cell equipped with a boron doped diamond electrode. Structural elucidation and prediction of oxidative metabolism pathways of TBBPA according to type II ipso-substitution were based on retention time, m/z ratio in negative mode and fragmentation pattern. Using the data obtained through high resolution MS analysis and the identification of single electron transfer (SET) as the initial step of a two-electron oxidation provided the necessary information to propose a mechanism for the electrochemical oxidation of TBBPA. Oxidation reactions involving aromatic hydroxylation and β-scission were the main degradation observed when studying the electrochemical behavior of TBBPA. Computational chemistry experiments using density functional theory (DFT) allowed to identify mono-hydroxylated reaction intermediate and dismissed the mechanism involving two concurrent hydroxylation. TBBPA oxidation products were compared to known metabolites of its biological and environmental degradation confirming the ability of electrochemistry to simulate β-scission reactions. T2 - Mass Spectrometry Forum 2024 CY - Vienna, Austria DA - 21.02.2024 KW - Emerging pollutants KW - Chemical characterization KW - Electrochemistry KW - Chemical and material safety KW - Mass spectrometry KW - Environment-material interactions PY - 2024 AN - OPUS4-59571 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Mekonnen, Tessema F. A1 - Byrne, Liam A1 - Panne, Ulrich A1 - Koch, Matthias T1 - Investigation of chlorpyrifos and its transformation products in fruits and spices by combining electrochemistry and liquid chromatography coupled to tandem mass spectrometry N2 - The identification of transformation products (TPs) of pesticides in food is a crucial task difficult to tackle, due to the lack of standards. In this work, we present a novel methodology to synthesize five main TP standards of the insecticide chlorpyrifos (CPF) and to investigate their occurrence in selected fruits and spices. TPs were electrochemically (EC) synthesized using a boron-doped diamond electrode (BDD) and identified by EC coupled online to mass spectrometry, LC-MS/MS, and high-resolution mass spectrometry. CPF and its TPs were analyzed in the food samples by LC-MS/MS on multiple reaction monitoring (MRM) after dispersive solid-phase extraction. A good recovery of 83–103% for CPF and 65–85% for TPs was obtained. Matrix effects, which cause signal suppression, ranged between 81 to 95% for all targeted analytes. The limit of detection and quantification for CPF were 1.6–1.9 and 4.9–5.7 μg/kg, respectively. Among investigated samples, CPF was determined in fresh lemon (104 μg/kg), fenugreek seed (40 μg/kg), and black pepper (31 μg/kg). CPF content in all samples was lower than the EU maximum residue level (MRL). The most frequently detected TPs were diethylthiophosphate and diethylphosphate. Other TPs, CPF oxon and trichloropyridinol, were also detected. Hence, EC is a versatile tool to synthesize TP standards which enables the determination of contaminants and residues in foodstuffs even if no commercial standards are available. KW - Transformation product KW - Electrochemistry KW - QuEChERS KW - LC-MS/MS KW - Photodegradation KW - Foodstuffs PY - 2018 UR - https://link.springer.com/article/10.1007/s12161-018-1245-7#citeas U6 - https://doi.org/10.1007/s12161-018-1245-7 SN - 1936-9751 SN - 1936-976X VL - 11 IS - 10 SP - 2657 EP - 2665 PB - Springer AN - OPUS4-45834 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -