TY - CONF A1 - Miccoli, Lorenzo A1 - Fontana, Patrick A1 - Silva, N. A1 - Kocadag, R. A1 - Cederqvist, Ch. A1 - Krefft, O. A1 - Qvaesching, D. T1 - UHPC-AAC/CLC composite panels with self-cleaning properties. Materials and production technology N2 - The aim of this study is to show the development of a façade composite panel combining either an autoclaved aerated concrete or a cellular lightweight concrete insulation layer with a box-type external ultra-high performance concrete (UHPC) supporting layer. The paper presents the materials characteristics of the different components and the production technology of the panel. The efficiency of surface modifications of the materials forming the external shell of the panel is reported. The activation of self-cleaning properties is described. The test results showed that the most efficient way to use the water-repellent agent is its application on the substrate before the concrete cast. Concerning the production technology, the preliminary studies showed more advantages of a twostep manufacturing procedure of the UHPC boxes than a one-step procedure. T2 - Smart Facades Materials Conference CY - Wels, Austria DA - 24.02.2016 KW - facade composite panels KW - ultra-high performance concrete (UHPC) KW - autoclaved aerated concrete (AAC) KW - cellular lightweight concrete (CLC) KW - self-cleaning properties PY - 2016 SP - 1 EP - 14 PB - OÖ Energiesparverband CY - Wels, Austria AN - OPUS4-37185 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Fontana, Patrick A1 - Miccoli, Lorenzo A1 - Kocadag, R. A1 - Silva, N. A1 - Qvaesching, D. A1 - Kreft, O. A1 - Cederqvist, Ch. ED - Fehling, E. ED - Middendorf, B. ED - Thiemicke, J. T1 - Composite UHPC facade elements with functional surfaces N2 - This paper presents an innovative way to combine an external ultra-high performance concrete (UHPC) supporting layer with an insulation layer of autoclaved aerated concrete (AAC) or cellular lightweight concrete (CLC) to create light-weight façade elements, which are improved in functionality and in energy efficiency. The durability of the façade elements is improved by developing UHPC with self-cleaning properties. One approach is based on the photocatalytic activation of the external UHPC shell by incorporation of TiO2 particles. The second approach consists of the modification of the UHPC surface by micro structuring in combination with the application of water-repellent agents to create durable super hydrophobicity. The current results obtained from laboratory testing are promising and demonstrate the feasibility of the approaches. T2 - HiPerMat 2016 4th International Symposium on Ultra-High Performance Concrete and High Performance Construction Materials CY - Kassel, Germany DA - 09.03.2016 KW - Composite UHPC elements KW - photocatalysis KW - super hydrophobicity KW - self-cleaning KW - autoclaved aerated concrete KW - cellular lightweight concrete PY - 2016 SN - 978-3-7376-0094-1 VL - 27 SP - 159 EP - 160 PB - kassel university press GmbH CY - Kassel AN - OPUS4-36566 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -