TY - JOUR A1 - Kneipp, Janina A1 - Wittig, B. A1 - Bohr, H. A1 - Kneipp, Janina T1 - Surface-enhanced Raman scattering: a new optical probe in molecular biophysics and biomedicine N2 - Sensitive and detailed molecular structural information plays an increasing role in molecular biophysics and molecular medicine. Therefore, vibrational spectroscopic techniques, such as Raman scattering, which provide high structural information content are of growing interest in biophysical and biomedical research. Raman spectroscopy can be revolutionized when the inelastic scattering process takes place in the very close vicinity of metal nanostructures. Under these conditions, strongly increased Raman signals can be obtained due to resonances between optical fields and the collective oscillations of the free electrons in the metal. This effect of surface-enhanced Raman scattering (SERS) allows us to push vibrational spectroscopy to new limits in detection sensitivity, lateral resolution, and molecular structural selectivity. This opens up exciting perspectives also in molecular biospectroscopy. This article highlights three directions where SERS can offer interesting new capabilities. This includes SERS as a technique for detecting and tracking a single molecule, a SERS-based nanosensor for probing the chemical composition and the pH value in a live cell, and the effect of socalled surface-enhanced Raman optical activity, which provides information on the chiral organization of molecules on surfaces. KW - Nanosensor KW - Raman spectroscopy KW - Cells KW - Single molecule KW - Plasmonics PY - 2010 U6 - https://doi.org/10.1007/s00214-009-0665-2 SN - 1432-881X VL - 125 IS - 3-6 SP - 319 EP - 327 PB - Springer CY - Berlin ; Heidelberg AN - OPUS4-23213 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Rice, W. L. A1 - Peteranderl, R. A1 - McLaughlin, M. A1 - Brown, D. A1 - Kneipp, K. T1 - Nanosensors in living cells based on surface-enhanced Raman scattering (SERS) T2 - Gordon Conference on Bioanalytical Sensors CY - Ventura, CA, USA DA - 2006-02-26 PY - 2006 AN - OPUS4-12070 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Kneipp, K. T1 - Two-photon vibrational spectroscopy for biosciences based on surface-enhanced hyper-Raman scattering PY - 2006 SN - 0027-8424 SN - 1091-6490 VL - 103 IS - 46 SP - 17149 EP - 17153 PB - National Academy of Sciences CY - Washington, DC AN - OPUS4-13934 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Kneipp, H. A1 - McLaughlin, M. A1 - Brown, D. A1 - Kneipp, K. T1 - In Vivo Molecular Probing of Cellular Compartments with Gold Nanoparticles and Nanoaggregates N2 - Surface-enhanced Raman (SERS) signatures were measured from single living cells at different times after the uptake of gold nanoparticles. The spectra are indicative of chemical changes in the environment of the nanostructures over time. The increase of the SERS signal strength and parallel TEM studies indicate the formation of nanoaggregates providing optimum SERS enhancement for ultrasensitive probing inside the endosomal compartment. The results have implications for medical and biotechnology applications of SERS nanosensors in cells. PY - 2006 U6 - https://doi.org/10.1021/nl061517x SN - 1530-6984 SN - 1530-6992 VL - 6 IS - 10 SP - 2225 EP - 2231 PB - American Chemical Society CY - Washington, DC AN - OPUS4-13935 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Kneipp, Janina ED - Kneipp, K. T1 - Nanosensors Based on SERS for Applications in Living Cells PY - 2006 SN - 3-540-33566-8 SN - 0303-4216 N1 - Serientitel: Topics in applied physics – Series title: Topics in applied physics IS - 103 SP - 335 EP - 350 PB - Springer CY - Berlin AN - OPUS4-13936 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Krause, Benjamin Christoph A1 - Seifert, Stephan A1 - Panne, Ulrich A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Matrix-assisted laser desorption/ionization mass spectrometric investigation of pollen and their classification by multivariate statistics N2 - RATIONALE A fast and reliable online identification of pollen is not yet available. The identification of pollen is based mainly on the evaluation of morphological data obtained by microscopic methods. METHODS Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS) was applied to the analysis of extracts and milled pollen samples. The obtained MALDI data were explored for characteristic peak patterns which could be subjected to a multivariate statistical analysis. RESULTS Two sample preparation methods are presented, which require only minimal or no chemical extraction of the pollen. MALDI pollen spectra could be recorded showing various peak patterns. A multivariate statistics approach allowed the classification of pollen into clusters indicating similarities and differences between various species. CONCLUSIONS These results demonstrate the potential and the reliability of MALDI-TOF MS for the identification and, in combination with multivariate statistics, also for the classification of pollen. KW - MALDI TOF mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2012 U6 - https://doi.org/10.1002/rcm.6202 SN - 0951-4198 SN - 1097-0231 VL - 26 IS - 9 SP - 1032 EP - 1038 PB - Wiley CY - Chichester AN - OPUS4-25648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schenk, Jonas A1 - Batzdorf, Lisa A1 - Emmerling, Franziska A1 - Kneipp, Janina A1 - Panne, Ulrich A1 - Buurman, Merwe T1 - Simultaneous UV/Vis spectroscopy and surface enhanced raman scattering of nanoparticle formation and aggregation in levitated droplets N2 - The formation and growth of hydroxylamine reduced silver nanoparticles were investigated by simultaneous Raman and UV/Vis spectroscopy coupled to an acoustic levitator as a sample holder. Based on the UV/Vis spectra, a two step particle formation mechanism with fast initial formation and adjacent coalescence can be proposed for the reduction of silver nitrate with hydroxylamine. The presence of the analyte adenine during particle formation resulted in differences in the adenine SERS signature compared to experiments, where adenine was added after particle synthesis. It was possible to monitor the adenine and sodium chloride induced aggregation of the nanoparticles and its dynamics based on both the extinction spectra and the SERS data. Correlating the information from the extinction spectra with the SERS intensity, the maximum SERS signals were observed at maximum extinction of the aggregated nanoparticle solution at the Raman excitation wavelength. PY - 2012 U6 - https://doi.org/10.1039/c2ay05744a SN - 1759-9660 SN - 1759-9679 N1 - Geburtsname von Batzdorf, Lisa: Tröbs, L. - Birth name of Batzdorf, Lisa: Tröbs, L. N1 - Geburtsname von Buurman, Merwe: Albrecht, M. - Birth name of Buurman, Merwe: Albrecht, M. VL - 4 IS - 5 SP - 1252 EP - 1258 PB - RSC Publ. CY - Cambridge AN - OPUS4-25742 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Kneipp, Janina T1 - Nanomaterials in complex biological systems: insights from Raman spectroscopy N2 - The interaction of nanomaterials with biomolecules, cells, and organisms plays an important role in cell biology, toxicology, and nanotechnology. Spontaneous Raman scattering can be used to probe biomolecules, cells, whole animals, and nanomaterials alike, opening interesting avenues to study the interaction of nanoparticles with complex biological systems. In this review we discuss work in biomedical Raman spectroscopy that has either been concerned directly with nanostructures and biosystems, or that indicates important directions for successful future studies on processes associated with nano-bio-interactions. KW - Cells KW - Nanomaterials KW - Raman PY - 2012 U6 - https://doi.org/10.1039/c2cs35127g SN - 0306-0012 SN - 1460-4744 VL - 41 IS - 17 SP - 5780 EP - 5799 PB - Royal Society of Chemistry CY - London AN - OPUS4-26184 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joseph, Viginia A1 - Matschulat, Andrea A1 - Polte, Jörg A1 - Rolf, Simone A1 - Emmerling, Franziska A1 - Kneipp, Janina T1 - SERS enhancement of gold nanospheres of defined size N2 - Monodisperse, citrate-stabilized gold nanoparticles of sizes ranging from 15 to 40 nm were synthesized and characterized by small angle X-ray scattering and UV-vis experiments. Identical surface properties of nanoparticles of different sizes to avoid variation in the chemical surface-enhanced Raman scattering (SERS) enhancement, as well as selection of experimental conditions so that no aggregation took place, enabled the investigation of enhancement of individual nanospheres. Enhancement factors (EFs) for SERS were determined using the dye crystal violet (CV). EFs for individual gold nanospheres ranged from 102 to 103, in agreement with theoretical predictions. An increase of the EFs of individual spheres with size can be correlated to changes in the extinction spectra of nanoparticle solutions. This confirms that the increase in enhancement with increasing size results from an increase in electromagnetic enhancement. Beyond this dependence of EFs of isolated gold spheres on their size, EFs were shown to vary with analyte concentration as a result of analyte-induced aggregation. This has implications for the application of nanoparticle solutions as SERS substrates in quantitative analytical tasks. KW - Surface-enhanced Raman scattering KW - Electromagnetic enhancement factor KW - Crystal violet KW - Citrate reduction KW - Gold nanoparticles PY - 2011 U6 - https://doi.org/10.1002/jrs.2939 SN - 0377-0486 SN - 1097-4555 VL - 42 IS - 9 SP - 1736 EP - 1742 PB - Wiley CY - Chichester AN - OPUS4-24483 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Giesen, Charlotte A1 - Müller, Larissa A1 - Mairinger, T. A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Roos, P.H. A1 - Panne, Ulrich A1 - Jakubowski, Norbert T1 - Iodine as an elemental marker for imaging of single cells and tissue sections by laser ablation inductively coupled plasma mass spectrometry N2 - A new laser ablation (LA)-ICP-MS method for single cell and cell nucleus imaging was developed. Therein, iodine was employed as an elemental dye for fibroblast cells and for thin tissue sections. At an incubation time of 60 s, iodine is located mainly within the cell nuclei. This effect was illustrated in fibroblast cells, and iodine signal within the cell nucleus was as high as 5 × 104 cps at 4 µm laser spot size. The surrounding cytoplasm was iodinated as well, but to a lesser extent. The spatial resolution attained was sufficient to detect even smaller cell nuclei within a liver biopsy tissue. Furthermore, iodine was successfully employed for biomolecule labeling and we demonstrated that iodine signal increased with increasing thickness of a palatine tonsil tissue. Thus, the use of iodine as an internal standard to correct for tissue inhomogeneities in LA-ICP-MS was investigated for the simultaneous detection of two tumor markers (Her 2 and CK 7) in breast cancer tissue. Additionally, lanthanide background resulting from glass ablation can be corrected for by Eu standardization. PY - 2011 U6 - https://doi.org/10.1039/c1ja10227c SN - 0267-9477 SN - 1364-5544 N1 - Geburtsname von Müller, Larissa: Wäntig, L. - Birth name of Müller, Larissa: Wäntig, L. VL - 26 IS - 11 SP - 2160 EP - 2165 PB - Royal Society of Chemistry CY - London AN - OPUS4-24964 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Giesen, Charlotte A1 - Traub, Heike A1 - Panne, Ulrich A1 - Kneipp, Janina A1 - Jakubowski, Norbert T1 - Quantitative imaging of gold and silver nanoparticles in single eukaryotic cells by laser ablation ICP-MS N2 - Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) was utilized for spatially resolved bioimaging of the distribution of silver and gold nanoparticles in individual fibroblast cells upon different incubation experiments. High spatial resolution was achieved by optimization of scan speed, ablation frequency, and laser energy. Nanoparticles are visualized with respect to cellular substructures and are found to accumulate in the perinuclear region with increasing incubation time. On the basis of matrix-matched calibration, we developed a method for quantification of the number of metal nanoparticles at the single-cell level. The results provide insight into nanoparticle/cell interactions and have implications for the development of analytical methods in tissue diagnostics and therapeutics. KW - Imaging KW - Cell KW - Nanoparticles KW - Laser ablation KW - ICP-MS PY - 2012 U6 - https://doi.org/10.1021/ac302639c SN - 0003-2700 SN - 1520-6882 VL - 84 IS - 22 SP - 9684 EP - 9688 PB - American Chemical Society CY - Washington, DC AN - OPUS4-27440 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Kneipp, K. A1 - McLaughlin, M. T1 - In vivo molecular probing of celluar compartments with gold nanoparticles and nanoaggregates T2 - ECSBM 2007 CY - Paris, France DA - 2007-09-01 PY - 2007 AN - OPUS4-17991 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Panne, Ulrich A1 - Brown, D. A1 - Kneipp, K. A1 - Wittig, B. T1 - SERS nanosensors for intracelluar applications T2 - FACSS 2007 CY - Memphis, TN, USA DA - 2007-10-14 PY - 2007 AN - OPUS4-17992 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Sherwood, M. A1 - Wittig, B. A1 - Kneipp, K. T1 - one and two-photon excited surface-enhanced Raman scattering of investigations of eukaryotic cells T2 - ICORS 2008 CY - Uxbridge, England DA - 2008-08-17 PY - 2008 AN - OPUS4-18519 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina T1 - Nanosensors for biological applications based on surface-enhanced hyper Raman scattering (SEHRS) T2 - Konferenz ECONOS/ microCARS 2008 CY - Innsbruck, Austria DA - 2008-05-27 PY - 2008 AN - OPUS4-18521 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina T1 - Nanoparticle-based SERS for biodiagnostic sensing T2 - Konferenz SPEC 2008 CY - São Paulo, Brazil DA - 2008-10-25 PY - 2008 AN - OPUS4-18505 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Eichelbaum, M. A1 - Kneipp, Janina A1 - Schmidt, B.E. A1 - Panne, Ulrich A1 - Rademann, K. T1 - SERS and Multiphoton-Induced Luminescence of Gold Micro- and Nanostructures Fabricated by NIR Femtosecond-Laser Irradiation KW - Gold KW - Luminescence KW - Multiphoton fabrication KW - Sol-gel processes KW - Surface-enhanced Raman scattering PY - 2008 U6 - https://doi.org/10.1002/cphc.200800417 SN - 1439-4235 SN - 1439-7641 VL - 9 IS - 15 SP - 2163 EP - 2167 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-18233 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulte, Franziska A1 - Lingott, J. A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Chemical characterization and classification of Pollen N2 - We report on the in situ characterization of tree pollen molecular composition based on Raman spectroscopy. Different from purification-based analysis, the nondestructive approach allows (i) to analyze various classes of molecules simultaneously at microscopic resolution and (ii) to acquire fingerprint-like chemical information that was used for the classification of pollen from different species. Hierarchical cluster analysis of spectra from fresh pollen samples of 15 species partly related at the genus level and family level indicates separation of species based on the complete Raman spectral signature and yields classification in accord with biological systematics. The results have implications for the further elucidation of pollen biochemistry and also for the development of chemistry-based online pollen identification methods. PY - 2008 U6 - https://doi.org/10.1021/ac801791a SN - 0003-2700 SN - 1520-6882 SP - 1 EP - 12 PB - American Chemical Society CY - Washington, DC AN - OPUS4-18234 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Wittig, B. A1 - Kneipp, K. T1 - One- and Two-Photon Excited Optical pH Probing for Cells Using Surface-Enhanced Raman and Hyper-Raman Nanosensors N2 - We demonstrate spatially resolved probing and imaging of pH in live cells by mobile and biocompatible nanosensors using surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid (pMBA) on gold nanoaggregates. Moreover, we also show that this concept of pH nanosensors can be extended to two-photon excitation by using surface-enhanced hyper-Raman scattering (SEHRS). In addition to the advantages of two-photon excitation, the SEHRS sensor enables measurements over a wide pH range without the use of multiple probes. PY - 2008 U6 - https://doi.org/10.1021/nl071418z SN - 1530-6984 SN - 1530-6992 VL - 7 IS - 9 SP - 2819 EP - 2823 PB - American Chemical Society CY - Washington, DC AN - OPUS4-18230 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Li, X. A1 - Sherwood, M. A1 - Panne, Ulrich A1 - Kneipp, H. A1 - Stockman, M.I. A1 - Kneipp, K. T1 - Gold Nanolenses Generated by Laser Ablation-Efficient Enhancing Structure for Surface Enhanced Raman Scattering Analytics and Sensing N2 - Nanoaggregates formed by metal spheres of different radii and interparticle distances represent finite, deterministic, self-similar systems that efficiently concentrate optical fields and act as “nanolenses”. Here we verify experimentally the theoretical concept of nanolenses and explore their potential as enhancing nanostructures in surface enhanced Raman scattering (SERS). Self-similar structures formed by gold nanospheres of different sizes are generated by laser ablation from solid gold into water. These nanolenses exhibit SERS enhancement factors on the order of 109. The “chemically clean” preparation process provides several advantages over chemically prepared nanoaggregates and makes the stable and biocompatible gold nanolenses potent enhancing structures for various analytical and sensing applications. KW - SERS KW - Ablation KW - Gold-Nanopartikel PY - 2008 U6 - https://doi.org/10.1021/ac8002215 SN - 0003-2700 SN - 1520-6882 VL - 80 IS - 11 SP - 4247 EP - 4251 PB - American Chemical Society CY - Washington, DC AN - OPUS4-18231 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Rajadurai, A. A1 - Redmond, R.W. A1 - Kneipp, K. T1 - Optical probing and imaging of live cells using SERS labels N2 - During surface-enhanced Raman scattering (SERS), molecules exhibit a significant increase in their Raman signals when attached, or in very close vicinity, to gold or silver nanostructures. This effect is exploited as the basis of a new class of optical labels. Here we demonstrate robust and sensitive SERS labels as probes for imaging live cells. These hybrid labels consist of gold nanoparticles with Rose Bengal or Crystal Violet attached as reporter molecules. These new labels are stable and nontoxic, do not suffer from photobleaching, and can be excited at any excitation wavelength, even in the near infrared. SERS labels can be detected and imaged through the specific Raman signatures of the reporters. In addition, surface-enhanced Raman spectroscopy in the local optical fields of the gold nanoparticles also provides sensitive information on the immediate molecular environment of the label in the cell and allows imaging of the native constituents of the cell. This is demonstrated by images based on a characteristic Raman line of the reporter as well as by displaying lipids based on the SERS signal of the C—H deformation/bending modes at ~ 1470 cm-1. KW - Surface-enhanced Raman scattering KW - Gold nanoparticles KW - Cells KW - SERS imaging PY - 2008 U6 - https://doi.org/10.1002/jrs.2060 SN - 0377-0486 SN - 1097-4555 IS - -Early View- SP - 1 EP - 5 PB - Wiley CY - Chichester AN - OPUS4-18232 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina T1 - Raman and infrared spectroscopy of complex biological systems T2 - 1. Jahrestagung des Arbeitskreises Prozessanalytik (GDCU) CY - Berlin, Germany DA - 2006-03-20 PY - 2006 AN - OPUS4-12381 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina T1 - Nanosensors in living cells based on surface-enhanced Raman scattering (SERS) T2 - EOS Topical Meeting on Molecular Plasmonic Devices CY - Engelberg, Switzerland DA - 2006-04-27 PY - 2006 AN - OPUS4-12385 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Peteranderl, R. A1 - Rice, W. L. A1 - Kneipp, K. T1 - SERS-based intracellular nanosensors: Exploring the chemistry of endosomes T2 - SPEC 2006 Shedding New Light on Disease: Optical Diagnosis for the New Millenium CY - Heidelberg, Germany DA - 2006-05-20 PY - 2006 AN - OPUS4-12386 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Peteranderl, R. A1 - Moss, D. T1 - Synchrotron FTIR microspectroscopic investigations on the interaction of nanoparticulate structures with eukaryotic cells T2 - SPEC 2006 Shedding New Light on Disease: Optical Diagnosis for the New Millenium CY - Heidelberg, Germany DA - 2006-05-20 PY - 2006 AN - OPUS4-12379 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Resch-Genger, Ute T1 - Near-infrared-emitting nanoparticles for lifetime-based multiplexed analysis and imaging of living cells N2 - The increase in information content from bioassays and bioimaging requires robust and efficient strategies for the detection of multiple analytes or targets in a single measurement, thereby addressing current health and security concerns. For fluorescence techniques, an attractive alternative to commonly performed spectral or color multiplexing presents lifetime multiplexing and the discrimination between different fluorophores based on their fluorescence decay kinetics. This strategy relies on fluorescent labels with sufficiently different lifetimes that are excitable at the same wavelength and detectable within the same spectral window. Here, we report on lifetime multiplexing and discrimination with a set of nanometer-sized particles loaded with near-infrared emissive organic fluorophores chosen to display very similar absorption and emission spectra, yet different fluorescence decay kinetics in suspension. Furthermore, as a first proof-of-concept, we describe bioimaging studies with 3T3 fibroblasts and J774 macrophages, incubated with mixtures of these reporters employing fluorescence lifetime imaging microscopy. These proof-of-concept measurements underline the potential of fluorescent nanoparticle reporters in fluorescence lifetime multiplexing, barcoding, and imaging for cellular studies, cell-based assays, and molecular imaging. KW - Fluorescence lifetime imaging microscopy KW - FLIM KW - Lifetime multiplexing KW - Near infrared KW - NIR KW - Cell imaging KW - Nanoparticles PY - 2013 U6 - https://doi.org/10.1021/nn4029458 SN - 1936-0851 VL - 7 IS - 8 SP - 6674 EP - 6684 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-29031 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Drescher, Daniela A1 - Matschulat, Andrea T1 - Raman spectroscopy on nanoparticle-influenced cellular systems T2 - BMBF-Nachwuchsförderung in der Biotechnologie CY - Berlin, Germany DA - 2010-01-26 PY - 2010 AN - OPUS4-20853 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulte, Franziska A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Molecular changes during pollen germination can be monitored by Raman microspectroscopy N2 - The processes associated with pollen germination were studied in vitro for two tree species, Salix caprea and Fraxinus excelsior under different nutrient conditions. The results provide evidence of changes in chemical composition of the pollen grains during germination. From the comparison of spectra of the pollen grain body and the growing pollen tube, it can be concluded that there are major chemical differences between these two morphological units. Comparison of germinated and ungerminated pollen grains reveals alterations in the metabolism. Composition of the germinating pollen grain and its morphological units depends on the plant species, but also on the nutrient conditions. The results suggest species-specific utilization of metabolite storage, and potential alterations of the pollen outer coat. Furthermore, discharge of molecules into the nutrient medium may depend on the nutrient conditions in the germination experiments. This has implications for further experiments on dynamic processes in pollen and related plant materials. KW - Pollen germination KW - Raman microspectroscopy KW - Imaging KW - Coumaric acid KW - Pollen tube KW - Sporopollenin PY - 2010 U6 - https://doi.org/10.1002/jbio.201000031 SN - 1864-063X VL - 3 IS - 8-9 SP - 542 EP - 547 PB - Wiley-VCH Verl. CY - Weinheim AN - OPUS4-23211 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Matschulat, Andrea A1 - Drescher, Daniela A1 - Kneipp, Janina T1 - Surface-enhanced Raman scattering hybrid nanoprobe multiplexing and imaging in biological systems N2 - Surface-enhanced Raman scattering (SERS) labels and probes consisting of gold and silver nanoaggregates and attached reporter molecules can be identified by the Raman signature of the reporter molecule. At the same time, SERS hybrid probes deliver sensitive molecular structural information on their nanoenvironment. Here we demonstrate full exploitation of the multifunctional and multiplexing capabilities inherent to such nanoprobes by applying cluster methods and principal components approaches for discrimination beyond the visual inspection of individual spectra that has been practiced so far. The reported results indicate that fast, multivariate evaluation of whole sets of multiple probes is feasible. Spectra of five different reporters were shown to be separable by hierarchical clustering and by principal components analysis (PCA). In a duplex imaging approach in live cells, hierarchical cluster analysis, K-means clustering, and PCA were used for imaging the positions of different types of SERS probes along with the spectral information from cellular constituents. Parallel to cellular imaging experiments, cytotoxicity of the SERS hybrid probes containing aromatic thiols as reporters is assessed. The reported results suggest multiplexing applications of the nontoxic SERS nanoprobes in high density sensing and imaging in complex biological structures. KW - Surface-enhanced Raman scattering KW - Nanosensor KW - Para-aminobenzenethiol KW - 2-naphthalenethiol KW - 3T3 cells KW - Principal component analysis KW - Hierarchical cluster analysis KW - Cytotoxicity KW - Imaging PY - 2010 U6 - https://doi.org/10.1021/nn100280z SN - 1936-0851 VL - 4 IS - 6 SP - 3259 EP - 3269 PB - ACS Publ. CY - Washington, DC, USA AN - OPUS4-23212 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Wittig, B. A1 - Kneipp, K. T1 - Following the dynamics of pH in endosomes of live cells with SERS nanosensors N2 - The surface enhanced Raman scattering (SERS) spectrum of a reporter molecule attached to gold or silver nanostructures, which is pH-sensitive, can deliver information on the local pH in the environment of the nanostructure. Here, we demonstrate the use of a mobile SERS nanosensor made from gold nanaoaggregates and 4-mercaptobenzoic acid (pMBA) attached as a reporter for monitoring changes in local pH of the cellular compartments of living NIH/3T3 cells. We show that SERS nanosensors enable the dynamics of local pH in individual live cells to be followed at subendosomal resolution in a timeline of cellular processes. This information is of basic interest for a better understanding of a broad range of physiological and metabolic processes as well as for a number of biotechnological applications. PY - 2010 U6 - https://doi.org/10.1021/jp910034z SN - 1932-7447 SN - 1089-5639 VL - 114 IS - 16 SP - 7421 EP - 7426 PB - Soc. CY - Washington, DC AN - OPUS4-23214 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hornemann, A. A1 - Drescher, Daniela A1 - Flemig, Sabine A1 - Kneipp, Janina T1 - Intracellular SERS hybrid probes using BSA-reporter conjugates N2 - Surface-enhanced Raman scattering (SERS) hybrid probes are characterized by the typical spectrum of a reporter molecule. In addition, they deliver information from their biological environment. Here, we report SERS hybrid probes generated by conjugating different reporter molecules to bovine serum albumin (BSA) and using gold nanoparticles as plasmonic core. Advantages of the BSA-conjugate hybrid nanoprobes over other SERS nanoprobes are a high biocompatibility, stabilization of the gold nanoparticles in the biological environment, stable reporter signals, and easy preparation. The coupling efficiencies of the BSA–reporter conjugates were determined by MALDI-TOF-MS. The conjugates' characteristic SERS spectra differ from the spectra of unbound reporter molecules. This is a consequence of the covalent coupling, which leads to altered SERS enhancement and changes in the chemical structures of the reporter and of BSA. The application of the BSA–reporter conjugate hybrid probes in 3T3 cells, including duplex imaging, is demonstrated. Hierarchical cluster analysis and principal components analysis were applied for multivariate imaging using the SERS signatures of the incorporated SERS hybrid nanoprobes along with the spectral information from biomolecules in endosomal structures of cells. The results suggest more successful applications of the SERS hybrid probes in cellular imaging and other unordered high-density bioanalytical sensing. KW - Bovine serum albumin KW - Nanosensor KW - SERS multiplexing KW - 3T3 cells KW - Gold nanoparticles KW - Hybrid nanoprobe KW - Rinderserumalbumin KW - Albumin KW - SERS KW - Konjugate KW - Conjugates KW - Cell KW - Zelle PY - 2013 U6 - https://doi.org/10.1007/s00216-013-7054-3 SN - 1618-2642 SN - 1618-2650 VL - 405 IS - 19 SP - 6209 EP - 6222 PB - Springer CY - Berlin AN - OPUS4-29819 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zancajo, V. M. R. A1 - Lindtner, T. A1 - Eisele, M. A1 - Huber, A. J. A1 - Elbaum, R. A1 - Kneipp, Janina T1 - FTIR Nanospectroscopy Shows Molecular Structures of Plant Biominerals and Cell Walls N2 - Plant tissues are complex composite structures of organic and inorganic components whose function relies on molecular heterogeneity at the nanometer scale. Scattering-type near-field optical microscopy (s-SNOM) in the mid-infrared (IR) region is used here to collect IR nanospectra from both fixed and native plant samples. We compared structures of chemically extracted silica bodies (phytoliths) to silicified and nonsilicified cell walls prepared as a flat block of epoxy-embedded awns of wheat (Triticum turgidum), thin sections of native epidermis cells from sorghum (Sorghum bicolor) comprising silica phytoliths, and isolated cells from awns of oats (Avena sterilis). The correlation of the scanning-probe IR images and the mechanical phase image enables a combined probing of mechanical material properties together with the chemical composition and structure of both the cell walls and the phytolith structures. The data reveal a structural heterogeneity of the different silica bodies in situ, as well as different compositions and crystallinities of cell wall components. In conclusion, IR nanospectroscopy is suggested as an ideal tool for studies of native plant materials of varied origins and preparations and could be applied to other inorganic–organic hybrid materials. KW - Cells KW - Plants KW - Organic polymers KW - Silica KW - Infrared light PY - 2020 U6 - https://doi.org/10.1021/acs.analchem.0c00271 SN - 0003-2700 VL - 92 IS - 20 SP - 13694 EP - 13701 PB - ACS Publications AN - OPUS4-54445 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Kneipp, Janina T1 - Surface Molecular Patterning by Plasmon-Catalyzed Reactions N2 - Self-assembled monolayers (SAMs) on plasmonic substrates play a significant role applications of surface-enhanced Raman scattering (SERS). At the same time, localized surface plasmon resonances (LSPRs) can be employed for a broad range of plasmon-supported chemical modifications. Here, micropatterning using the derivatization of SAMs on gold nanosubstrates for rewritable SERS-based security labels or as the basis for sensing arrays functionalized with biomolecules is demonstrated using different plasmon-catalyzed reactions. The formation of 4,4′-dimercaptoazobenzene (DMAB) from p-aminothiophenol (PATP) as well as from p-nitrothiophenol (PNTP) and the reduction of PNTP to PATP are used to change the functionality of the substrate in specified positions. Employing LSPR, the reactions are started by illumination using visible laser light at a high intensity in a focal spot of a microscope objective and yield microscopic patterns of the reaction product. The obtained molecular patterns can be erased by other reactions, enabling different strategies for rewriting, encryption, or stepwise functionalization. KW - 4,4′-dimercaptoazobenzene KW - Surface molecular patterning KW - Plasmon-catalyzed reactions KW - p-aminothiophenol KW - p-nitrothiophenol PY - 2021 U6 - https://doi.org/10.1021/acsami.1c12410 SN - 1944-8252 VL - 13 IS - 36 SP - 43708 EP - 43714 PB - ACS Publications AN - OPUS4-53341 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Drescher, Daniela A1 - Zeise, Ingrid A1 - Guttmann, P. A1 - Traub, Heike A1 - Büchner, T A1 - Jakubowski, Norbert A1 - Schneider, G. T1 - Multifunctional plasmonic and BrightSilica probes for the in situ characerization of nanoparticle-bio interaction T2 - NanoBio Europe, 10th International Congress & Exhibition on Nanobiotechnology CY - Münster, Germany DA - 2014-06-02 PY - 2014 AN - OPUS4-30782 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Zeise, Ingrid A1 - Traub, Heike A1 - Guttmann, P. A1 - Seifert, Stephan A1 - Büchner, Tina A1 - Jakubowski, Norbert A1 - Schneider, G. A1 - Kneipp, Janina T1 - In situ characterization of SiO2 nanoparticle biointeractions using BrightSilica N2 - By adding a gold core to silica nanoparticles (BrightSilica), silica-like nanoparticles are generated that, unlike unmodified silica nanoparticles, provide three types of complementary information to investigate the silica nano-biointeraction inside eukaryotic cells in situ. Firstly, organic molecules in proximity of and penetrating into the silica shell in live cells are monitored by surface-enhanced Raman scattering (SERS). The SERS data show interaction of the hybrid silica particles with tyrosine, cysteine and phenylalanine side chains of adsorbed proteins. Composition of the biomolecular corona of BrightSilica nanoparticles differs in fibroblast and macrophage cells. Secondly, quantification of the BrightSilica nanoparticles using laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) micromapping indicates a different interaction of silica nanoparticles compared to gold nanoparticles under the same experimental conditions. Thirdly, the metal cores allow the investigation of particle distribution and interaction in the cellular ultrastructure by cryo nanoscale X-ray tomography (cryo-XT). In 3D reconstructions the assumption is confirmed that BrightSilica nanoparticles enter cells by an endocytotic mechanism. The high SERS intensities are explained by the beneficial plasmonic properties due to agglomeration of BrightSilica. The results have implications for the development of multi-modal qualitative and quantitative characterization in comparative nanotoxicology and bionanotechnology. KW - Silica nanoparticles KW - Surface-enhanced Raman scattering KW - X-ray tomography KW - LA-ICP-MS KW - Core–shell structures PY - 2014 U6 - https://doi.org/10.1002/adfm.201304126 SN - 1616-301X SN - 1616-3028 VL - 24 IS - 24 SP - 3765 EP - 3775 PB - Wiley-VCH CY - Weinheim AN - OPUS4-30924 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Drescher, Daniela A1 - Büchner, Tina A1 - Zeise, Ingrid A1 - Jakubowski, Norbert A1 - Traub, Heike A1 - Guttmann, P. A1 - Schneider, G. T1 - Nano-bio Interactions as Studied by Surface-Enhanced Raman Scattering and Complementary Nanoanalytical Tools T2 - SCIX 2014 CY - Reno, NV, USA DA - 2014-09-28 PY - 2014 AN - OPUS4-31545 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Müller, Larissa A1 - Traub, Heike A1 - Jakubowski, Norbert A1 - Drescher, Daniela A1 - Baranov, Vladimir A1 - Kneipp, Janina T1 - Trends in single-cell analysis by use of ICP-MS N2 - The analysis of single cells is a growing research field in many disciplines such as toxicology, medical diagnosis, drug and cancer research or metallomics, and different methods based on microscopic, mass spectrometric, and spectroscopic techniques are under investigation. This review focuses on the most recent trends in which inductively coupled plasma mass spectrometry (ICP-MS) and ICP optical emission spectrometry (ICP-OES) are applied for single-cell analysis using metal atoms being intrinsically present in cells, taken up by cells (e.g., nanoparticles), or which are artificially bound to a cell. For the latter, especially element tagged antibodies are of high interest and are discussed in the review. The application of different sample introduction systems for liquid analysis (pneumatic nebulization, droplet generation) and elemental imaging by laser ablation ICP-MS (LA-ICP-MS) of single cells are highlighted. Because of the high complexity of biological systems and for a better understanding of processes and dynamics of biologically or medically relevant cells, the authors discuss the idea of 'multimodal spectroscopies.' KW - Bioanalytical methods KW - Cell systems/single cell analysis KW - Mass spectrometry/ICP-MS PY - 2014 U6 - https://doi.org/10.1007/s00216-014-8143-7 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 27 SP - 6963 EP - 6977 PB - Springer CY - Berlin AN - OPUS4-31717 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Büchner, Tina A1 - Drescher, Daniela A1 - Traub, Heike A1 - Schrade, P. A1 - Bachmann, S. A1 - Jakubowski, Norbert A1 - Kneipp, Janina T1 - Relating surface-enhanced Raman scattering signals of cells to gold nanoparticle aggregation as determined by LA-ICP-MS micromapping N2 - The cellular response to nanoparticle exposure is essential in various contexts, especially in nanotoxicity and nanomedicine. Here, 14-nm gold nanoparticles in 3T3 fibroblast cells are investigated in a series of pulse-chase experiments with a 30-min incubation pulse and chase times ranging from 15 min to 48 h. The gold nanoparticles and their aggregates are quantified inside the cellular ultrastructure by laser ablation inductively coupled plasma mass spectrometry micromapping and evaluated regarding the surface-enhanced Raman scattering (SERS) signals. In this way, both information about their localization at the micrometre scale and their molecular nanoenvironment, respectively, is obtained and can be related. Thus, the nanoparticle pathway from endocytotic uptake, intracellular processing, to cell division can be followed. It is shown that the ability of the intracellular nanoparticles and their accumulations and aggregates to support high SERS signals is neither directly related to nanoparticle amount nor to high local nanoparticle densities. The SERS data indicate that aggregate geometry and interparticle distances in the cell must change in the course of endosomal maturation and play a critical role for a specific gold nanoparticle type in order to act as efficient SERS nanoprobe. This finding is supported by TEM images, showing only a minor portion of aggregates that present small interparticle spacing. The SERS spectra obtained after different chase times show a changing composition and/or structure of the biomolecule corona of the gold nanoparticles as a consequence of endosomal processing. KW - Gold nanoparticles KW - Surface-enhanced Raman scattering KW - LA-ICP-MS KW - Fibroblast KW - Cell KW - Particle aggregation KW - Endosome PY - 2014 U6 - https://doi.org/10.1007/s00216-014-8069-0 SN - 1618-2642 SN - 1618-2650 VL - 406 IS - 27 SP - 7003 EP - 7014 PB - Springer CY - Berlin AN - OPUS4-31718 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Merk, Virginia A1 - Drescher, Daniela A1 - Kneipp, H. A1 - Kneipp, K. A1 - Gühlke, Marina A1 - Gnutzmann, Tanja A1 - Matschulat, Andrea T1 - Surface-enhanced Raman scattering for bioanalytical chemistry T2 - Analytica CY - Munich, Germany DA - 2010-03-23 PY - 2010 N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. AN - OPUS4-21578 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Merk, Virginia A1 - Matschulat, Andrea A1 - Schenk, Jonas A1 - Panne, Ulrich A1 - Kneipp, K. A1 - Drescher, Daniela T1 - Gold nanosensors based on one- and two-photon surface-enhanced Raman scattering T2 - Gold 2009 CY - Heidelberg, Germany DA - 2009-07-26 PY - 2009 N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. AN - OPUS4-19311 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Merk, Virginia A1 - Matschulat, Andrea A1 - Schenk, Jonas A1 - Panne, Ulrich A1 - Kneipp, K. A1 - Drescher, Daniela T1 - Gold nanosensors based on one- and two-photon surface-enhanced Raman scattering T2 - Molecular Plasmonics CY - Jena, Germany DA - 2009-05-14 PY - 2009 N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. AN - OPUS4-19312 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina T1 - surface-enthanced Raman scattering probes for intracellular sensing and imaging T2 - Konferenz Molekulare Bildgebung CY - Berlin, Germany DA - 2009-06-18 PY - 2009 AN - OPUS4-19313 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kneipp, Janina A1 - Merk, Virginia A1 - Matschulat, Andrea A1 - Drescher, Daniela T1 - Nanoparticle-based SERS for biodiagnostic sensing T2 - European Conference on the Spectroscopy of Biological Molecules 2009 CY - Palermo, Italy DA - 2009-08-28 PY - 2009 N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. AN - OPUS4-19956 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Simo, A. A1 - Merk, Virginia A1 - Fenger, R. A1 - Kneipp, Janina A1 - Rademann, K. T1 - Long-term stable silver subsurface ion-exchanged glasses for SERS applications N2 - We report on the formation of silver subsurface ion-exchanged metal oxide (silver SIMO) glasses and their surface-enhanced Raman scattering (SERS) activity. The samples were prepared by a combined thermal and chemical three-step methodology and characterized by transmission electron microscopy (TEM), atomic force microscopy (AFM), environmental electron scanning microscopy (ESEM), and UV/Vis spectroscopy. This unique method provides SERS substrates with protection against contamination and strong, reliable and reproducible SERS enhancement. The Raman enhancement factors of the long-term stable SIMO glasses were estimated to approximately 107. KW - AFM/TEM/SEM KW - Ion-exchange KW - Nanoparticles KW - Glasses KW - Surface-enhanced Raman scattering PY - 2011 U6 - https://doi.org/10.1002/cphc.201100098 SN - 1439-4235 N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. VL - 12 IS - 9 SP - 1683 EP - 1688 PB - Wiley-VCH CY - Weinheim AN - OPUS4-23872 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Kneipp, H. A1 - Wittig, B. A1 - Kneipp, K. T1 - Novel optical nanosensors for probing and imaging live cells N2 - This review introduces multifunctional optical nanosensors based on surface-enhanced Raman scattering (SERS) and demonstrates their application in live cells. The novel nanosensors have the potential to improve our understanding of cellular processes on the molecular level. The hybrid sensor consists of gold or silver nanoparticles with an attached reporter species. The sensor can be detected and imaged based on the SERS signature of the reporter. This results in several advantages, such as high spectral specificity, multiplex capabilities, improved contrast, and photostability. SERS sensors not only highlight cellular structures, based on enhanced Raman spectra of intrinsic cellular molecules measured in the local optical fields of the gold nanoparticles, they also provide molecular structural information on their cellular environment. Moreover, the SERS signature of the reporter can deliver information on the local pH value inside a cell at subendosomal resolution. SERS sensors are suitable for one- and two-photon excitation. KW - Cells KW - Optical nanosensors KW - Nano gold KW - Spectroscopy KW - SERS KW - ph probing PY - 2010 U6 - https://doi.org/10.1016/j.nano.2009.07.009 SN - 1549-9634 SN - 1549-9642 VL - 6 IS - 2 SP - 214 EP - 226 PB - Elsevier CY - New York AN - OPUS4-23943 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Merk, Virginia A1 - Schulte, Franziska A1 - Rooch, Heidemarie A1 - Feldmann, Ines A1 - Dörfel, Ilona A1 - Österle, Werner A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Surface-enhanced Raman scattering with silver nanostructures generated in situ in a sporopollenin biopolymer matrix N2 - Silver nanoparticles were generated based on citrate reduction in the ultrastructure of the sporopollenin biopolymer of Ambrosia artemisiifolia (ragweed) and Secale cereale (rye). The nanoparticles enable the acquisition of SERS spectra and thereby a vibrational characterization of the local molecular structure of sporopollenin. PY - 2011 U6 - https://doi.org/10.1039/c0cc05326k SN - 0022-4936 SN - 0009-241x SN - 1359-7345 SN - 1364-548x N1 - Geburtsname von Merk, Virginia: Joseph, V. - Birth name of Merk, Virginia: Joseph, V. VL - 47 IS - 11 SP - 3236 EP - 3238 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-23482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Hoffmann, Katrin A1 - Behnke, Thomas A1 - Drescher, Daniela A1 - Kneipp, Janina A1 - Resch-Genger, Ute T1 - Lifetime-based discrimination between spectrally matching vis and NIR emitting particle labels and probes N2 - Increasing the information content from bioassays which requires robust and efficient strategies for the detection of multiple analytes or targets in a single measurement is an important field of research, especially in the context of meeting current security and health concerns. An attractive alternative to spectral multiplexing, which relies on fluorescent labels excitable at the same wavelength, yet sufficiently differing in their emission spectra or color presents lifetime multiplexing. For this purpose, we recently introduced a new strategy based on 'pattern-matching' in the lifetime domain, which was exemplary exploited for the discrimination between organic dyes and quantum dot labels revealing multi-exponential decay kinetics and allowed quantification of these labels. Meanwhile, we have succeeded in extending this lifetime multiplexing approach to nanometer-sized particle labels and probes absorbing and emitting in the visible (vis) and near-infrared (NIR) spectral region. Here, we present a first proof-of-principle of this approach for a pair of NIR-fluorescent particles. Each particle is loaded with a single organic dye chosen to display very similar absorption and emission spectra, yet different fluorescence decay kinetics. Examples for the lifetime-based distinction between pairs of these fluorescent nanoparticles in solution and in cells are presented. The results underline the potential of fluorescenc lifetime multiplexing in life science and bioanalysis. KW - Fluorescence KW - Fluorescence lifetime imaging microscopy KW - FLIM KW - Lifetime Multiplexing KW - Particle Label KW - Near-infrared KW - NIR KW - Cell imaging KW - Nanoparticles PY - 2011 U6 - https://doi.org/10.1117/12.881442 SN - 1605-7422 VL - 7905 SP - 79051F-1 EP - 79051F-9 PB - SPIE, The International Society for Optical Engineering CY - Bellingham, Wash. AN - OPUS4-23637 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schulte, Franziska A1 - Mäder, J. A1 - Kroh, L.W. A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Characterization of pollen carotenoids with in situ and high-performance thin-layer chromatography supported resonant Raman spectroscopy N2 - Raman signatures of the carotenoid component are studied in individual pollen grains from different species of trees. The information is obtained as differences in the strong pre-resonant Raman spectra measured before and after photodepletion of the carotenoid molecules. The results provide the first in situ evidence of interspecies differences in pollen carotenoid content, structure, and/or assembly between plant species without prior purification. The analysis of carotenoids in situ is confirmed by high-performance thin-layer chromatography (HPTLC)-supported resonance Raman data measured directly on the HPTLC plates after separation of carotenoids in pollen extracts. Utilization of the in situ, extraction-free procedure in carotenoid analysis will improve sensitivity and structural selectivity and provides insight into carotenoid structure and composition in single pollen grains. PY - 2009 U6 - https://doi.org/10.1021/ac901389p SN - 0003-2700 SN - 1520-6882 VL - 81 IS - 20 SP - 8426 EP - 8433 PB - American Chemical Society CY - Washington, DC AN - OPUS4-20260 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klimakow, Maria A1 - Leiterer, Jork A1 - Kneipp, Janina A1 - Rössler, E. A1 - Panne, Ulrich A1 - Rademann, K. A1 - Emmerling, Franziska T1 - Combined synchrotron XRD/Raman measurements: In situ identification of polymorphic transitions during crystallization processes N2 - A combination of two analytical methods, time-resolved X-ray diffraction (XRD) and Raman spectroscopy, is presented as a novel tool for crystallization studies. An acoustic levitator was employed as sample environment. This setup enables the acquisition of XRD and Raman data in situ simultaneously within a 20 s period and hence permits investigation of polymorphic phase transitions during the crystallization process in different solvents (methanol, ethanol, acetone, dichloromethane, acetonitrile). These real time measurements allow the determination of the phase content from the onset of the first crystalline molecular assemblies to the stable system. To evaluate the capability of this approach, the setup was applied to elucidate the crystallization process of the polymorphic compound nifedipine. The results indicate the existence of solvent-dependent transient phases during the crystallization process. The quality of the data allowed the assignment of the lattice constants of the hitherto unknown crystal structure of the β-polymorph. KW - Synchrotron radiation KW - XRD KW - Raman spectroscopy KW - Polymorphism KW - Crystallization KW - Acoustic levitation KW - Nifedipine PY - 2010 U6 - https://doi.org/10.1021/la100540q SN - 0743-7463 SN - 1520-5827 VL - 26 IS - 13 SP - 11233 EP - 11237 PB - American Chemical Society CY - Washington, DC AN - OPUS4-21396 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Drescher, Daniela A1 - Orts Gil, Guillermo A1 - Laube, G. A1 - Natte, Kishore A1 - Veh, R.W. A1 - Österle, Werner A1 - Kneipp, Janina T1 - Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects N2 - Cell cultures form the basis of most biological assays conducted to assess the cytotoxicity of nanomaterials. Since the molecular environment of nanoparticles exerts influence on their physicochemical properties, it can have an impact on nanotoxicity. Here, toxicity of silica nanoparticles upon delivery by fluid-phase uptake is studied in a 3T3 fibroblast cell line. Based on XTT viability assay, cytotoxicity is shown to be a function of (1) particle concentration and (2) of fetal calf serum (FCS) content in the cell culture medium. Application of dynamic light scattering shows that both parameters affect particle agglomeration. The DLS Experiments verify the stability of the nanoparticles in culture medium without FCS over a wide range of particle concentrations. The related toxicity can be mainly accounted for by single silica nanoparticles and small agglomerates. In contrast, agglomeration of silica nanoparticles in all FCS-containing media is observed, resulting in a decrease of the associated toxicity. This result has implications for the evaluation of the cytotoxic potential of silica nanoparticles and possibly also other nanomaterials in standard cell culture. KW - Agglomeration KW - Cytotoxicity KW - Fibroblast cells KW - Serum proteins KW - Silica nanoparticles PY - 2011 U6 - https://doi.org/10.1007/s00216-011-4893-7 SN - 1618-2642 SN - 1618-2650 VL - 400 IS - 5 SP - 1367 EP - 1373 PB - Springer CY - Berlin AN - OPUS4-23678 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Schmid, Thomas A1 - Jungnickel, R. A1 - Neuhaus, B. A1 - Riedel, Jens A1 - Kneipp, Janina A1 - Lüter, C. T1 - Raman spectroscopy as a tool for the collection management of microscope slides N2 - Throughout the history of preparation of biological samples for microscopy the choice of the mounting medium was sometimes dictated merely by availability of the used media. Thus, a plethora of resins and other organic polymers as well as complex mixtures are found to serve as mounting agents in microscope slide collections of museums of natural history, impeding the work for both curators and conservators. Dramatically, in some cases the used mounting media can already be observed to have undergone crystallization and other decomposition processes within few years of mounting demanding immediate action in restoring as well as an imminent precaution in conservation. Therefore, an unambiguous chemical identification of the used agent as well as its current aging stage is of great interest for the biologist community. The technical demands on the analytical approach to obtain this information can be straightforwardly identified. Any used technique has to be non-destructive, yield in molecular information allowing for a chemical identification of the used mounting agents and allow for a spatially well-defined interrogation in a thin sample slice, typically through a transparent cover slip. In this contribution we present a thorough study of the applicability of Raman spectroscopy for the described task. The obtained results clearly demonstrate the successful feasibility of the chosen method for a) a clear distinction between different media, b) the elucidation of the chemical composition of a multicomponent medium and c) an unambiguous identification of real unknown samples by a distinct assignment to a previously recorded spectral library. This library database was built up by recording pure mounting agents and will be provided to the general public. In combination with a Raman spectrometer, it can be an invaluable tool for future curation and conservation endeavors devoted to microscope slide collections at natural history museums. KW - Taxonomy KW - Mounting medium KW - Coverslip seal PY - 2016 U6 - https://doi.org/10.1016/j.jcz.2016.07.002 SN - 0044-5231 VL - 265 SP - 178 EP - 190 PB - Elsevier AN - OPUS4-38210 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Merk, V. A1 - Kneipp, Janina T1 - Identification of aqueous pollen extracts using surface enhanced Raman scattering (SERS) and pattern recognition methods N2 - Aqueous pollen extracts of varying taxonomic relations were analyzed with surface enhanced Raman scattering (SERS) by using gold nanoparticles in aqueous suspensions as SERS substrate. This enables a selective vibrational characterization of the pollen water soluble fraction (mostly cellular components) devoid of the spectral contributions from the insoluble sporopollenin outer layer. The spectra of the pollen extracts are species-specific, and the chemical fingerprints can be exploited to achieve a classification that can distinguish between different species of the same genus. In the simple experimental procedure, several thousands of spectra per species are generated. Using an artificial neural network (ANN), it is demonstrated that analysis of the intrinsic biochemical information of the pollen cells in the SERS data enables the identification of pollen from different plant species at high accuracy. The ANN extracts the taxonomically-relevant information from the data in spite of high intra-species spectral variation caused by signal fluctuations and preparation specifics. The results show that SERS can be used for the reliable characterization and identification of pollen samples. They have implications for improved investigation of pollen physiology and for allergy warning. KW - Pattern recognition KW - Surface enhanced Raman scattering (SERS) KW - Artificial neural networks (ANN) KW - Multivariate statistics KW - Pollen PY - 2016 U6 - https://doi.org/10.1002/jbio.201500176 VL - 9 IS - 1-2 SP - 181 EP - 189 PB - Wiley VCH AN - OPUS4-38092 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Gernert, U. A1 - Gerhardt, R. F. A1 - Höhn, E.-M. A1 - Belder, D. A1 - Kneipp, Janina T1 - Catalysis by Metal Nanoparticles in a Plug-In Optofluidic Platform: Redox Reactions of p-Nitrobenzenethiol and p-Aminothiophenol N2 - The spectroscopic characterization by surface-enhanced Raman scattering (SERS) has shown great potential in studies of heterogeneous catalysis. We describe a plug-in multifunctional optofluidic platform that can be tailored to serve both as a variable catalyst material and for sensitive optical characterization of the respective reactions using SERS in microfluidic systems. The platform enables the characterization of reactions under a controlled gas atmosphere and does not present with limitations due to nanoparticle adsorption or memory effects. Spectra of the gold-catalyzed reduction of p-nitrothiophenol by sodium borohydride using the plug-in probe provide evidence that the borohydride is the direct source of hydrogen on the gold surface, and that a radical anion is formed as an intermediate. The in situ monitoring of the photoinduced dimerization of p-aminothiophenol indicates that the activation of oxygen is essential for the plasmon-catalyzed oxidation on gold nanoparticles and strongly supports the central role of metal oxide species. KW - Gaseous reactants KW - Heterogeneous catalysis KW - Microfluidics KW - Optofluidics KW - Radicals KW - Reusable KW - Surface-enhanced Raman scattering (SERS) PY - 2018 UR - https://pubs.acs.org/doi/10.1021/acscatal.8b00101 U6 - https://doi.org/10.1021/acscatal.8b00101 VL - 8 IS - 3 SP - 2443 EP - 2449 PB - American Chemical Society CY - Washington, DC, USA AN - OPUS4-44628 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Diehn, Sabrina A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Sauerland, V. A1 - Barahona, C. A1 - Weidner, Steffen T1 - Multivariate analysis of MALDI imaging mass spectrometry data of mixtures of single pollen grains N2 - Mixtures of pollen grains of three different species (Corylus avellana, Alnus cordata, and Pinus sylvestris) were investigated by matrixassisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF imaging MS). The amount of pollen grains was reduced stepwise from > 10 to single pollen grains. For sample pretreatment, we modified a previously applied approach, where any additional extraction steps were omitted. Our results show that characteristic pollen MALDI mass spectra can be obtained from a single pollen grain, which is the prerequisite for a reliable pollen classification in practical applications. MALDI imaging of laterally resolved pollen grains provides additional information by reducing the complexity of the MS spectra of mixtures, where frequently peak discrimination is observed. Combined with multivariate statistical analyses, such as principal component analysis (PCA), our approach offers the chance for a fast and reliable identification of individual pollen grains by mass spectrometry. KW - MALDI Imaging MS KW - Pollen grains KW - Multivariate Statistics KW - Hierarchical cluster analysis KW - Principal component analysis PY - 2018 U6 - https://doi.org/10.1007/s13361-018-2036-5 SN - 1044-0305 SN - 1879-1123 VL - 29 IS - 11 SP - 2237 EP - 2247 PB - Springer AN - OPUS4-45607 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Placement of single proteins within the SERS hot spots of self-assembled silver nanolenses N2 - This study demonstrates the bottom-up synthesis of silver nanolenses.Arobust coating protocol enabled the functionalization of differently sized silver nanoparticles with DNAsingle strands of orthogonal sequence.Coated particles 10 nm, 20 nm, and 60 nm in diameter were self-assembled by DNAorigami scaffolds to form silver nanolenses.Single molecules of the protein streptavidin were selectively placed in the gap of highest electric field enhancement. Streptavidin labelled with alkyne groups served as model analyte in surface- enhanced Raman scattering (SERS) experiments.Bycorre- lated Raman mapping and atomic force microscopy, SERS signals of the alkyne labels of asingle streptavidin molecule, from asingle silver nanolens,were detected. The discrete,self- similar aggregates of solid silver nanoparticles are promising for plasmonic applications. KW - DNA origami KW - Surface enhanced Raman scattering KW - Protein KW - Single molecule KW - Nanotechnology PY - 2018 U6 - https://doi.org/10.1002/anie.201801748 SN - 1433-7851 VL - 57 IS - 25 SP - 7444 EP - 7447 PB - WILEY AN - OPUS4-45743 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Yuya A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Platzierung einzelner Proteine in den SERS-Hot-Spots selbstorganisierte Silbernanolinsen N2 - Diese Studie demonstriert die Bottom-up-Synthese von Silbernanolinsen. Ein robustes Beschichtungsprotokoll ermçglichte die Funktionalisierung unterschiedlich großer Silbernanopartikel mit einzelstr-ngiger DNAunterschiedlicher Sequenz. Derartig beschichtete Partikel mit Durchmessern von 10 nm, 20 nm und 60 nm wurden mithilfe von DNA-Origami- Gergsten zu Silbernanolinsen angeordnet. Ein einzelnes Mo- lekgldes Proteins Streptavidin ist in demjenigen Spalt zwi- schenden Partikeln immobilisiert worden, der die hçchste Feldverst-rkung zur Verfggung stellt. Streptavidin war dabei mit Alkin-Gruppen modifiziert und fungierte als Modellanalyt in Experimenten zur oberfl-chenverst-rkten Raman-Streuung (SERS). Korrelierte Raman- und Rasterkraftmikroskopie- Messungen ermçglichten die Aufnahme von SERS-Signalen der Alkingruppen eines einzelnen Streptavidins,von einer einzelnen Silbernanolinse.Diese diskreten, selbst-hnlichen Silbernanopartikelaggregate versprechen vielf-ltige Anwen- dungen im Feld der Plasmonik KW - DNA Origami KW - Oberflächen verstärkte Raman Streuung KW - Proteine KW - Einzelmolekülspektroskopie KW - Nanotechnologie PY - 2018 U6 - https://doi.org/10.1002/ange.201801748 SN - 1521-3757 SN - 0044-8249 VL - 130 IS - 25 SP - 7566 EP - 7569 PB - WILEY AN - OPUS4-45744 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Seifert, Stephan A1 - Weidner, Steffen A1 - Panne, Ulrich A1 - Kneipp, Janina T1 - Taxonomic relationship of pollen from MALDI TOF MS data using multivariate statistics N2 - Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been suggested as a promising tool for the investigation of pollen, but the usefulness of this approach for classification and identification of pollen species has to be proven by an application to samples of varying taxonomic relations. KW - MALDI mass spectrometry KW - Pollen KW - Multivariate statistics PY - 2015 U6 - https://doi.org/10.1002/rcm.7207 SN - 0951-4198 SN - 1097-0231 VL - 29 SP - 1145 EP - 1154 PB - Wiley CY - Chichester AN - OPUS4-35296 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Li, Y. A1 - Frisch, J. A1 - Bär, M. A1 - Rappich, J. A1 - Kneipp, Janina T1 - In situ surface-enhanced Raman scattering shows ligand-enhanced hot electron harvesting on silver, gold, and copper nanoparticles N2 - Hot carriers (electrons and holes) generated from the decay of localized surface plasmon resonances can take a major role in catalytic reactions on metal nanoparticles. By obtaining surface enhanced Raman scattering (SERS) spectra of p-aminothiophenol as product of the reduction of p-nitrothiophenol by hot electrons, different catalytic activity is revealed here for nanoparticles of silver, gold, and copper. As a main finding, a series of different ligands, comprising halide and non-halide species, are found to enhance product formation in the reduction reaction on nanoparticles of all three metals. A comparison with the standard electrode potentials of the metals with and without the ligands and SERS data obtained at different electrode potential indicate that the higher catalytic activity can be associated with a higher Fermi level, thereby resulting in an improved efficiency of hot carrier generation. The concept of such a ligand-enhanced hot electron reduction provides a way to make light-to-chemical energy conversion more efficient due to improved electron harvesting. KW - Ligands KW - Hot electrons KW - SERS KW - p-Nitrothiophenol KW - p-Aminothiophenol PY - 2020 U6 - https://doi.org/10.1016/j.jcat.2020.01.006 VL - 383 SP - 153 EP - 159 PB - Elsevier Inc. CY - Amsterdam, NL AN - OPUS4-50626 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, S. A1 - Zimmermann, B. A1 - Tafintseva, V. A1 - Seifert, S. A1 - Bagcioglu, M. A1 - Ohlson, M. A1 - Weidner, Steffen A1 - Fjellheim, S. A1 - Kohler, A. A1 - Kneipp, Janina T1 - Combining Chemical Information From Grass Pollen in Multimodal Characterization N2 - The analysis of pollen chemical composition is important to many fields, including agriculture, plant physiology, ecology, allergology, and climate studies. Here, the potential of a combination of different spectroscopic and spectrometric methods regarding the characterization of small biochemical differences between pollen samples was evaluated using multivariate statistical approaches. Pollen samples, collected from three populations of the grass Poa alpina, were analyzed using Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, surface enhanced Raman scattering (SERS), and matrix assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS). The variation in the sample set can be described in a hierarchical framework comprising three populations of the same grass species and four different growth conditions of the parent plants for each of the populations. Therefore, the data set can work here as a model system to evaluate the classification and characterization ability of the different spectroscopic and spectrometric methods. ANOVA Simultaneous Component Analysis (ASCA) was applied to achieve a separation of different sources of variance in the complex sample set. Since the chosen methods and sample preparations probe different parts and/or molecular constituents of the pollen grains, complementary information about the chemical composition of the pollen can be obtained. By using consensus principal component analysis (CPCA), data from the different methods are linked together. This enables an investigation of the underlying global information, since complementary chemical data are combined. The molecular information from four spectroscopies was combined with phenotypical information gathered from the parent plants, thereby helping to potentially link pollen chemistry to other biotic and abiotic parameters. KW - Pollen KW - MALDI-TOF MS KW - FTIR KW - Raman KW - Multivariate analyses PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504822 VL - 10 SP - 1788 AN - OPUS4-50482 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Zancajo, Victor M.R. A1 - Diehn, S. A1 - Filiba, N. A1 - Elbaum, R. T1 - Spectroscopic Discrimination of Sorghum Silica Phytoliths N2 - Grasses accumulate silicon in the form of silicic acid, which is precipitated as amorphous silica in microscopic particles termed phytoliths. These particles comprise a variety of morphologies according to the cell type in which the silica was deposited. Despite the evident morphological differences, phytolith chemistry has mostly been analysed in bulk samples, neglecting differences between the varied types formed in the same species. In this work, we extracted leaf phytoliths from mature plants of Sorghum bicolor (L.) Moench. Using solid state NMR and thermogravimetric analysis, we show that the extraction methods alter greatly the silica molecular structure, its condensation degree and the trapped organic matter. Measurements of individual phytoliths by Raman and synchrotron FTIR microspectroscopies in combination with multivariate analysis separated bilobate silica cells from prickles and long cells, based on the silica molecular structures and the fraction and composition of occluded organic matter. The variations in structure and composition of sorghum phytoliths suggest that the biological pathways leading to silica deposition vary between these cell types. KW - Phytoliths KW - Biosilicification KW - Raman KW - Sorghum KW - Solid state NMR KW - Synchrotron FTIR PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-502672 VL - 10 SP - 1571 PB - Frontiers Media CY - Lausanne AN - OPUS4-50267 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Kanehira, Y. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Amorphous Carbon Generation as a Photocatalytic Reaction on DNA-Assembled Gold and Silver Nanostructures N2 - Background signals from in situ-formed amorphous carbon, despite not being fully understood, are known to be a common issue in few-molecule surface-enhanced Raman scattering (SERS). Here, discrete gold and silver nanoparticle aggregates assembled by DNA origami were used to study the conditions for the formation of amorphous carbon during SERS measurements. Gold and silver dimers were exposed to laser light of varied power densities and wavelengths. Amorphous carbon prevalently formed on silver aggregates and at high power densities. Time-resolved measurements enabled us to follow the formation of amorphous carbon. Silver nanolenses consisting of three differently-sized silver nanoparticles were used to follow the generation of amorphous carbon at the single-nanostructure level. This allowed observation of the many sharp peaks that constitute the broad amorphous carbon signal found in ensemble measurements. In conclusion, we highlight strategies to prevent amorphous carbon formation, especially for DNA-assembled SERS substrates. KW - Amorphous carbon KW - DNA origami KW - SERS KW - Nanoparticle dimers KW - Nanolenses PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486484 SN - 1420-3049 VL - 24 IS - 12 SP - Article Number: 2324-1 EP - 10 PB - MDPI AN - OPUS4-48648 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Palantöken, Sinam A1 - Bethke, K. A1 - Zivanovic, V. A1 - Kneipp, Janina A1 - Rademann, Klaus A1 - Kalinka, Gerhard T1 - Cellulose hydrogels physically crosslinked by glycine: Synthesis, characterization, thermal and mechanical properties N2 - Biopolymers are very efficient for significant applications ranging from tissue engineering, biological devices to water purification. There is a tremendous potential value of cellulose because of ist being the most abundant biopolymer on earth, swellability, and functional groups to be modified. A novel, highly efficient route for the fabrication of mechanically stable and natural hydrogels is described in which cellulose and glycine are dissolved in an alkaline solution of NaOH and neutralized in an acidic solution. The dissolving temperature and the glycine amount are essential parameters for the self-assembly of cellulose chains and for Tuning the morphology and the aggregate structures of the resulting hydrogels. Glycine plays the role of a physical crosslinker based on the Information obtained from FTIR and Raman spectra. Among the prepared set of hydrogels, CL5Gly30 hydrogels have the highest capacity to absorb water. The prepared CL5Gly30 gels can absorb up to seven times their dry weight due to its porous 3-D network structure. CL5Gly10 hydrogel exhibits 80% deformation under 21 N force executed. The method developed in this article can contribute to the application of heavy metal adsorption in aqueous solutions for water purification and waste management. KW - Biopolymer KW - Cellulose KW - Hydrogel KW - Natural KW - Synthesis PY - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-486845 SN - 1097-4628 SN - 0021-8995 VL - 136 SP - 48380, 1 EP - 11 PB - Wiley CY - USA AN - OPUS4-48684 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Z. A1 - Kneipp, Janina T1 - Ligand-Supported Hot Electron Harvesting: Revisiting the pHResponsive Surface-Enhanced Raman Scattering Spectrum of p‑Aminothiophenol N2 - The discussion of the surface-enhanced Raman scattering (SERS) spectra of p-aminothiophenol (PATP) and of ist photocatalytic reaction product 4,4′-dimercaptoazobenzene (DMAB) is important for understanding plasmon-supported spectroscopy and catalysis. Here, SERS spectra indicate that DMAB forms also in a nonphotocatalytic reaction on silver nanoparticles. Spectra measured at low pH, in the presence of the acids HCl, H2SO4, HNO3, and H3PO4, show that DMAB is reduced to PATP when both protons and chloride ions are present. Moreover, the successful reduction of DMAB in the presence of other, halide and nonhalide, ligands suggests a central role of these species in the reduction. As discussed, the ligands increase the efficiency of hot-electron harvesting. The pH-associated reversibility of the SERS spectrum of PATP is established as an Observation of the DMAB dimer at high pH and of PATP as a product of its hot-electron reduction at low pH, in the presence of the appropriate ligand. KW - Redox reactions KW - Metal nanoparticles KW - Ligands KW - Raman spectroscopy KW - Nanoparticle formation PY - 2021 U6 - https://doi.org/10.1021/acs.jpclett.0c03732 SN - 1948-7185 VL - 12 IS - 5 SP - 1542 EP - 1547 PB - ACS Publications AN - OPUS4-52140 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zhang, Zhiyang A1 - Merk, V. A1 - Müller, Anja A1 - Unger, Wolfgang A1 - Kneipp, Janina T1 - Role of metal cations in plasmon-catalyzed oxidation: A case study of p-aminothiophenol dimerization N2 - The mechanism of the plasmon-catalyzed reaction of p-aminothiophenol (PATP) to 4,4′-dimercaptoazobenzene (DMAB) on the surface of metal nanoparticles has been discussed using data from surface-enhanced Raman scattering of DMAB. Oxides and hydroxides formed in a plasmon-catalyzed process were proposed to play a central role in the reaction. Here, we report DMAB formation on gold nanoparticles occurring in the presence of the metal cations Ag+, Au3+, Pt4+, and Hg2+. The experiments were carried out under conditions where formation of gold oxide or hydroxide from the nanoparticles can be excluded and at high pH where the formation of the corresponding oxidic species from the metal ions is favored. On the basis of our results, we conclude that, under these conditions, the selective oxidation of PATP to DMAB takes place via formation of a metal oxide from the ionic species in a plasmon-catalyzed process. By evidencing the necessity of the presence of the metal cations, the reported results underpin the importance of metal oxides in the reaction. KW - Metal ions KW - Plasmonic catalysis KW - p-aminothiophenol KW - 4,4'-dimercaptoazobenzene KW - Surface-enhanced Raman scattering PY - 2017 UR - http://pubs.acs.org/doi/abs/10.1021/acscatal.7b02700 U6 - https://doi.org/10.1021/acscatal.7b02700 SN - 2155-5435 N1 - Geburtsname von Müller, Anja: Hermanns, A. - Birth name of Müller, Anja: Hermanns, A. VL - 7 IS - 11 SP - 7803 EP - 7809 PB - American Chemical Society CY - Washington AN - OPUS4-43001 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Joester, Maike A1 - Seifert, Stephan A1 - Emmerling, Franziska A1 - Kneipp, Janina T1 - Physiological influence of silica on germinating pollen as shown by Raman spectroscopy N2 - The process of silicification in plants and the biochemical effects of silica in plant tissues are largely unknown. To study the molecular changes occurring in growing cells that are exposed to higher than normal concentration of silicic acid, Raman spectra of germinating pollen grains of three species (Pinus nigra, Picea omorika, and Camellia japonica) were analyzed in a multivariate classification approach that takes into account the variation of biochemical composition due to species, plant tissue structure, and germination condition. The results of principal component analyses of the Raman spectra indicate differences in the utilization of stored lipids, a changed mobilization of storage carbohydrates in the pollen grain bodies, and altered composition and/or structure of cellulose of the developing pollen tube cell walls. These biochemical changes vary in the different species. KW - Silica KW - Raman spectroscopy KW - Principal component analysis PY - 2017 U6 - https://doi.org/10.1002/jbio.201600011 SN - 1864-063X SN - 1864-0648 VL - 10 IS - 4 SP - 542 EP - 552 AN - OPUS4-40090 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Heck, Christian A1 - Prinz, Julia A1 - Dathe, A. A1 - Merck, V. A1 - Stranik, O. A1 - Fritzsche, W. A1 - Kneipp, Janina A1 - Bald, Ilko T1 - Gold nanolenses self-assembled by DNA origami N2 - Nanolenses are self-similar chains of metal nanoparticles, which can theoretically provide extremely high field enhancements. Yet, the complex structure renders their synthesis challenging and has hampered closer analyses so far. Here, DNA origami is used to self-assemble 10, 20, and 60 nm gold nanoparticles as plasmonic gold nanolenses (AuNLs) in solution and in billions of copies. Three different geometrical arrangements are assembled, and for each of the three designs, surface-enhanced Raman scattering (SERS) capabilities of single AuNLs are assessed. For the design which shows the best properties, SERS signals from the two different internal gaps are compared by selectively placing probe dyes. The highest Raman enhancement is found for the gap between the small and medium nanoparticle, which is indicative of a cascaded field enhancement. KW - DNA origami KW - SERS KW - Gold nanoparticles KW - Plasmonics PY - 2017 UR - http://pubs.acs.org/doi/pdf/10.1021/acsphotonics.6b00946 U6 - https://doi.org/10.1021/acsphotonics.6b00946 SN - 2330-4022 VL - 4 IS - 5 SP - 1123 EP - 1130 AN - OPUS4-40587 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the Preparation of Pollen Grains for MALDI-TOF MS Classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - PCA KW - MALDI-TOF MS KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-392885 UR - http://www.mdpi.com/1422-0067/18/3/543/ SN - 1422-0067 VL - 18 IS - 3 SP - 543 EP - 554 PB - MDPI AG CY - Basel, Switzerland AN - OPUS4-39288 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zeise, I. A1 - Heiner, Z. A1 - Holz, S. A1 - Joester, Maike A1 - Buttner, C. A1 - Kneipp, Janina T1 - Raman imaging of plant cell walls in sections of cucumis sativus N2 - Raman microspectra combine information on chemical composition of plant tissues with spatial information. The contributions from the building blocks of the cell walls in the Raman spectra of plant tissues can vary in the microscopic sub-structures of the tissue. Here, we discuss the analysis of 55 Raman maps of root, stem, and leaf tissues of Cucumis sativus, using different spectral contributions from cellulose and lignin in both univariate and multivariate imaging methods. Imaging based on hierarchical cluster analysis (HCA) and principal component analysis (PCA) indicates different substructures in the xylem cell walls of the different tissues. Using specific signals from the cell wall spectra, analysis of the whole set of different tissue sections based on the Raman images reveals differences in xylem tissue morphology. Due to the specifics of excitation of the Raman spectra in the visible wavelength range (532 nm), which is, e.g., in resonance with carotenoid species, effects of photobleaching and the possibility of exploiting depletion difference spectra for molecular characterization in Raman imaging of plants are discussed. The reported results provide both, specific information on the molecular composition of cucumber tissue Raman spectra, and general directions for future imaging studies in plant tissues. KW - Raman KW - Imaging KW - Pants PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-474610 SN - 2223-7747 VL - 7 IS - 1 SP - 7, 1 EP - 16 PB - MDPI, ST ALBAN-ANLAGE 66, CH-4052 BASEL, SWITZERLAND AN - OPUS4-47461 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Lauer, Franziska A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Weidner, Steffen T1 - Simplifying the preparation of pollen grains for MALDI-TOF MS classification N2 - Matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF MS) is a well-implemented analytical technique for the investigation of complex biological samples. In MS, the sample preparation strategy is decisive for the success of the measurements. Here, sample preparation processes and target materials for the investigation of different pollen grains are compared. A reduced and optimized sample preparation process prior to MALDI-TOF measurement is presented using conductive carbon tape as target. The application of conductive tape yields in enhanced absolute signal intensities and mass spectral pattern information, which leads to a clear separation in subsequent pattern analysis. The results will be used to improve the taxonomic differentiation and identification, and might be useful for the development of a simple routine method to identify pollen based on mass spectrometry. KW - MALDI KW - Conductive carbon tape KW - Pollen KW - Sample pretreatment KW - Principal component analysis PY - 2017 U6 - https://doi.org/10.3390/ijms18030543 SN - 1422-0067 SN - 1661-6596 VL - 18 IS - 3 SP - 543-1 EP - 543-11 PB - MDPI AN - OPUS4-41733 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Diehn, Sabrina A1 - Zimmermann, B. A1 - Bagcioglu, M. A1 - Seifert, Stephan A1 - Kohler, A. A1 - Ohlson, M. A1 - Fjellheim, S. A1 - Weidner, Steffen A1 - Kneipp, Janina T1 - Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) shows adaption of grass pollen composition N2 - MALDI time-of-flight mass spectrometry (MALDI-TOF MS) has become a widely used tool for the classification of biological samples. The complex chemical composition of pollen grains leads to highly specific, fingerprint-like mass spectra, with respect to the pollen species. Beyond the species-specific composition, the variances in pollen chemistry can be hierarchically structured, including the level of different populations, of environmental conditions or different genotypes. We demonstrate here the sensitivity of MALDI-TOF MS regarding the adaption of the chemical composition of three Poaceae (grass) pollen for different populations of parent plants by analyzing the mass spectra with partial least squares discriminant analysis (PLS-DA) and principal component analysis (PCA). Thereby, variances in species, population and specific growth conditions of the plants were observed simultaneously. In particular, the chemical pattern revealed by the MALDI spectra enabled discrimination of the different populations of one species. Specifically, the role of environmental changes and their effect on the pollen chemistry of three different grass species is discussed. Analysis of the Group formation within the respective populations showed a varying influence of plant genotype on the classification, depending on the species, and permits conclusions regarding the respective rigidity or plasticity towards environmental changes. KW - Pollen KW - MALDI-TOF MS KW - Classification KW - Partial least square discriminant analysis (PLS-DA) KW - Principal component analysis (PCA) PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-465294 SN - 2045-2322 VL - 8 IS - 1 SP - 16591, 1 EP - 11 PB - Nature AN - OPUS4-46529 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kneipp, Janina A1 - Zhang, Zhiyang T1 - Mapping the Inhomogeneity in Plasmonic Catalysis on Supported Gold Nanoparticles Using Surface-Enhanced Raman Scattering Microspectroscopy N2 - The characterization of a catalyst often occurs by averaging over large areas of the catalyst material. On the other hand, optical probing is easily achieved at a resolution at the micrometer scale, specifically in microspectroscopy. Here, using surface-enhanced Raman scattering (SERS) mapping of larger areas with micrometer-sized spots that contain tens to hundreds of supported gold nanoparticles each, the photoinduced dimerization of p-aminothiophenol (PATP) to 4,4′-dimercaptoazobenzene (DMAB) was monitored. The mapping data reveal an inhomogeneous distribution of catalytic activity in the plasmon-catalyzed reaction in spite of a very homogeneous plasmonic enhancement of the optical signals in SERS. The results lead to the conclusion that only a fraction of the nanostructures may be responsible for a high catalytic activity. The high spot-to-spot variation in catalytic activity is also demonstrated for DMAB formation by the plasmon-catalyzed reduction from p-nitrothiophenol (PNTP) and confirms that an improvement of the accuracy and reproducibility in the characterization of catalytic reactions can be achieved by microspectroscopic probing of many positions. Using SERS micromapping during the incubation of PATP, we demonstrate that the reaction occurs during the incubation process and is influenced by different parameters, leading to the conclusion of dimerization in a gold-catalyzed, nonphotochemical reaction as an alternative to the plasmon-catalyzed process. The results have implications for the future characterization of new catalyst materials as well as for optical sensing using plasmonic materials. KW - P-aminothiophenol KW - Silver nanoparticles KW - Chemical transformation KW - Metal nanoparticles KW - Coupling reactions KW - AU nanoparticle KW - AG nanoparticle KW - Spectroscopy KW - Sers KW - Molecule PY - 2018 U6 - https://doi.org/10.1021/acs.analchem.8b01701 VL - 90 IS - 15 SP - 9199 EP - 9205 PB - American Chemical Society AN - OPUS4-46372 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bagcioglu, M. A1 - Kohler, A. A1 - Seifert, Stephan A1 - Kneipp, Janina A1 - Zimmermann, B. T1 - Monitoring of plant-environment interactions by high-throughput FTIR spectroscopy of pollen N2 - 1. Fourier transform infrar ed (FTIR) spectroscopy enables chemical analysis of pollen samples for plant phenotyping to stud y plant–environment interactions, such as influence of climate change or pathogens. However, current approach, such as microspectrosc opy and attenuated total refle ction spectrosco py, doe s not allow fo r high-throughput protocols. This st udy at hand suggests a new sp ectroscopic method for high-throughp ut characterization of pollen. 2. Samples were measured as thin films of pollen fragments using a Bruker FTIR spe ctrometer with a high-throughput eXTension (HTS-XT) unit employing 384-well plates. In total, 146 pollen samples, belonging to 31 different pollen species of Fagaceae and Betulaceae and collected during three consecutive years (2012–2014) at locations in Croatia, Germany and Norway, were analysed. Critical steps in the sample preparation and measurement, such as variabilities between technical replicates, between microplates and between spectrometers, were studied. 3. Measurement variations due to sample preparation, microplate holders and instrumentation were low, and thus allowed differentiation of samples with respect to phylogeny and biogeography. The spectral variability for a ran ge of Fagales spec ies (Fagus, Quercus, Betula, Corylus, Alnus and Ostrya) showed high-species-specific differences in pollen’s chemical composition due to eithe r location or year. Statistically significant inter-annual and locational differences in the pollen spectra indicate that pollen chemical composition has high phenotypic plasticity and is influenced by local climate conditions. The variations in composition are connected to lipids, proteins, carbohydrates and sporopollenins that play crucial ro les in cold and desiccation tolerance, protection against UV radiation and as material and energy reserves. 4. The results of this study demonstrate the value of high-throughput FTIR approach for the systematic collection of data on ecosystems. The novel FTIR approach offers fast, reliable and economical screening of large number of samples by semi-automated methodology. The high-throughput approach could provide crucial understanding on plant–climate interactions with respect to biochemical variation within genera, species and populations. KW - Ecology and environmental sciences KW - Infrared spectroscopy KW - Pollen PY - 2017 UR - http://onlinelibrary.wiley.com/doi/10.1111/2041-210X.12697/epdf U6 - https://doi.org/10.1111/2041-210X.12697 VL - 8 IS - 7 SP - 870 EP - 880 PB - British Ecological Society CY - London, UK AN - OPUS4-41540 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Jakubowski, Norbert A1 - Müller, L. A1 - Traub, Heike A1 - Esteban-Fernández, D. A1 - Panne, Ulrich A1 - Herrmann, Antje A1 - Schellenberger, E. A1 - Theuring, F. A1 - Kneipp, Janina T1 - Imaging by laser ablation ICP-MS N2 - ICP-MS is a well-established analytical method which excels by high accuracy, high dynamic range and extremely low limits of detection for most metals. Furthermore ICP-MS offers a very high multi-element coverage so that many elements of the periodic table can be detected simultaneously. In this series of lectures, we want to focus on the historical developments, fundamentals, instrumentation and novel applications of ICP-MS in the life and material sciences. T2 - Ringvorlesung Analytik CY - Humboldt-Universität zu Berlin DA - 23.06.2017 KW - Laser ablation ICP-MS KW - Bio-Imaging PY - 2017 AN - OPUS4-40757 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bagcioglu, M. A1 - Kohler, A. A1 - Seifert, St. A1 - Kneipp, Janina A1 - Zimmermann, B. T1 - Monitoring of plant–environment interactions by high-throughput FTIR spectroscopy of pollen N2 - 1. Fourier transform infrared (FTIR) spectroscopy enables chemical analysis of pollen samples for plant phenotyping to study plant–environment interactions, such as influence of climate change or pathogens.However, current approach, such as microspectroscopy and attenuated total reflection spectroscopy, does not allow for highthroughput protocols. This study at hand suggests a new spectroscopic method for high-throughput characterization of pollen. 2. Samples were measured as thin films of pollen fragments using a Bruker FTIR spectrometer with a highthroughput eXTension (HTS-XT) unit employing 384-well plates. In total, 146 pollen samples, belonging to 31 different pollen species of Fagaceae and Betulaceae and collected during three consecutive years (2012–2014) at locations in Croatia, Germany and Norway, were analysed. Critical steps in the sample preparation and measurement, such as variabilities between technical replicates, between microplates and between spectrometers, were studied. 3. Measurement variations due to sample preparation, microplate holders and instrumentation were low, and thus allowed differentiation of samples with respect to phylogeny and biogeography. The spectral variability for a range of Fagales species (Fagus, Quercus, Betula, Corylus, Alnus and Ostrya) showed high-species-specific differences in pollen’s chemical composition due to either location or year. Statistically significant inter-annual and locational differences in the pollen spectra indicate that pollen chemical composition has high phenotypic plasticity and is influenced by local climate conditions. The variations in composition are connected to lipids, proteins, carbohydrates and sporopollenins that play crucial roles in cold and desiccation tolerance, protection against UVradiation and asmaterial and energy reserves. 4. The results of this study demonstrate the value of high-throughput FTIR approach for the systematic collection of data on ecosystems. The novel FTIR approach offers fast, reliable and economical screening of large number of samples by semi-automated methodology. The high-throughput approach could provide crucial understanding on plant–climate interactions with respect to biochemical variation within genera, species and populations. KW - Alnus KW - Betula KW - Betulaceae KW - Corylus KW - Ecology and environmental sciences KW - Fagaceae KW - Fagus KW - Infrared spectroscopy KW - Pollen KW - Quercus PY - 2017 U6 - https://doi.org/10.1111/2041-210X.12697 VL - 2017 IS - 8 SP - 870 EP - 880 PB - British Ecological Society AN - OPUS4-41838 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -