TY - JOUR A1 - Knappe, Patrick A1 - Boehmert, L. A1 - Bienert, Ralf A1 - Karmutzki, S. A1 - Niemann, B. A1 - Lampen, A. A1 - Thünemann, Andreas T1 - Processing nanoparticles with A4F-SAXS for toxicological studies: Iron oxide in cell-based assays N2 - Nanoparticles are not typically ready-to-use for in vitro cell culture assays. Prior to their use in assays, powder samples containing nanoparticles must be dispersed, de-agglomerated, fractionated by size, and characterized with respect to size and size distribution. For this purpose we report exemplarily on polyphosphate-stabilized iron oxide nanoparticles in aqueous suspension. Fractionation and online particle size analysis was performed in a time-saving procedure lasting 50 min by combining asymmetrical flow field-flow fractionation (A4F) and small-angle X-ray scattering (SAXS). Narrowly distributed nanoparticle fractions with radii of gyration (Rg) from 7 to 21 nm were obtained from polydisperse samples. The A4F-SAXS combination is introduced for the preparation of well-characterized sample fractions originating from a highly polydisperse system as typically found in engineered nanoparticles. A4F-SAXS processed particles are ready-to-use for toxicological studies. The results of preliminary tests of the effects of fractionated iron oxide nanoparticles with a Rg of 15 nm on a human colon model cell line are reported. KW - Field-flow-fractionation KW - Small-angle X-ray scattering KW - Nanoparticle PY - 2011 U6 - https://doi.org/10.1016/j.chroma.2010.11.012 SN - 0021-9673 VL - 1218 IS - 27 SP - 4160 EP - 4166 PB - Elsevier CY - Amsterdam AN - OPUS4-23951 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Weidner, Steffen A1 - Knappe, Patrick A1 - Panne, Ulrich T1 - MALDI-TOF imaging mass spectrometry of artifacts in 'dried droplet' polymer samples N2 - Matrix-assisted laser desorption/ionization-timeof-flight (MALDI-TOF) imaging of polystyrenes with various molecular masses was applied to study spatial molecular mass distribution of polymers in sample spots prepared by the 'dried droplet' method. When different solvents and target surfaces were examined, a segregation of single homologous polymers was observed depending upon the evaporation rate of the solvent. For the observed Patterns left by the evaporating droplet, a hypothesis is offered taking into account different hydrodynamic interactions and diffusion. The results illustrate that spot preparation using the conventionally 'dried droplet' method is prone to artifacts and should be avoided for reliable and reproducible MALDI mass spectrometry experiments with regards to the Determination of molecular masses and mass distributions. KW - MALDI KW - Mass spectrometry imaging KW - Polymer KW - Droplet PY - 2011 U6 - https://doi.org/10.1007/s00216-011-4773-1 SN - 1618-2642 SN - 1618-2650 VL - 401 IS - 1 SP - 127 EP - 134 PB - Springer CY - Berlin AN - OPUS4-24538 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -