TY - JOUR A1 - Kindrachuk, Vitaliy A1 - Klunker, Andre T1 - Phase field modeling of Hertzian cone cracks under spherica indentation N2 - A phase field model of brittle fracture has been developed to simulate the Hertzian crack induced by penetration of a rigid sphere to an isotropic linear-elastic half-space. The fracture formation is regarded as a diffusive field variable, which is zero for the intact material and unity if there is a crack. Crack growth is assumed to be driven by a strain invariant. The numerical implementation is performed with the finite element method and an implicit time integration scheme. The mechanical equilibrium and the phase field equations are solved in a staggered manner, sequentially updating the displacement field and the phase field variable. Numerical examples demonstrate the capability of the model to reproduce the nucleation and growth of the Hertzian cone crack. KW - Hertzian cracks KW - Phase field model KW - Contact mechanics PY - 2021 U6 - https://doi.org/10.1007/s11223-021-00251-9 VL - 52 IS - 6 SP - 967 EP - 974 AN - OPUS4-52276 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klunker, André A1 - Köppe, Tabea A1 - Daum, Werner T1 - Different numerical methods around the SHPB experiment N2 - The Split Hopkinson Pressure Bar (SHPB) is a materials testing apparatus primarily designed for the analysis of viscoplastic material behavior at very high strain rates. Because of its complexity it is common practice to simplify the underlying exact mechanical theory by making strong assumptions. On the one hand this has to be done to achieve any results at all on the other hand one commits systematic errors. Therefore we utilize different numerical and Simulation methods to analyze and minimize these errors. T2 - 31st Danubia-Adria Symposium on advances in experimental mechanics CY - Kempten, Germany DA - 24.09.2014 PY - 2014 SN - 978-3-00-046740-0 N1 - Geburtsname von Köppe, Tabea: Wilk, T. - Birth name of Köppe, Tabea: Wilk, T. SP - 189 EP - 190 AN - OPUS4-31726 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -