TY - JOUR A1 - Bettge, Dirk A1 - Azevedo, César Roberto de Farias A1 - Klinger, Christian T1 - Editorial - Special Issue “A Tribute to A. Martens” N2 - The 100th anniversary of the death of Adolf Martens will be commemorated on July 24th, 2014. He is eponymously remembered today through the term martensite, which was first used by Floris Osmond as a name for the metastable phase that results from rapid quenching of carbon steels. Born in 1850 near to Hagenow in the region Mecklenburg, Germany, Martens was one of the pioneers of materials engineering in 19th century Europe. Martens began his career working for the Prussian Eastern Railway before joining the Royal Industrial Academy in Berlin in 1880. In 1884, he was appointed director of the Royal Mechanical Experimental Station, a small institution associated to the academy. Failure analysis was continuously practiced at this institution, which became later the nucleus of the German Federal Institute for Materials Research and Testing (BAM), for the 110 years since. The history of Martens will be dealt with in an in-depth article in this special issue. Since the 19th century, failure analysis techniques have been refined, and new methods of chemical analysis and non-destructive testing have been developed; however, the basic approach to failure analysis has not changed much since Martens' days. The basic tenets of failure analysis remain things like on-site inspection, extensive visual 'non-destructive' inspection, developing an understanding of the background story, performing materials testing, and 'connecting the dots.' Martens introduced and developed experimental techniques like macro photography, fractography, metallography, hardness measurements, and mechanical testing. Modern failure analysts continue adding even more techniques to this list, leading to a more interdisciplinary approach – which many would say is the only way to find the root causes of complex failure events. The present special issue of EFA presents an overview of more than 100 years of failure analysis at BAM and its predecessors, closing the circle from the beginnings of modern failure analysis done by Martens himself in the 1890s to its present-day application. This special issue starts with an excursion back to Martens' work and innovations and presents a newly translated original manuscript of Martens from 1890. Whereas some papers of Martens and his co-workers are well documented, only little can be found about failure analysis in the period from 1914 to the 1950s. Most documents of this period have not survived until today. Beginning in the 1960s more and more significant works are preserved, which were using the interdisciplinary approach of Martens. Since the beginning of the digital age in the 1980s almost all text documents are accessible, whereas digital images were stored since the 1990s. Since then the problem is no longer accessibility but copyright issues that prevent many interesting case studies from being published. Maybe the next generation of failure scientists can reveal some of them later on. PY - 2014 U6 - https://doi.org/10.1016/j.engfailanal.2014.04.006 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to A. Martens' SP - 1 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31591 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Bettge, Dirk A1 - Klinger, Christian A1 - Klingbeil, Dietmar A1 - Eberle, Arno T1 - Investigations on the breakdown of a heat recovery steam generator during the initial operation run N2 - Several years ago, in 2003, an industrial heat recovery steam generator in charge of generating process steam in a petrochemical refinery was installed and prepared for initial operation. The steam generator enclosed an evaporator section and a superheater section consisting mainly of bundles of tubes with the longest up to several metres in length. During initial operation test runs severe leakages in the evaporator and superheater modules became noticeable. The test runs were stopped and after disassembly, through-wall cracks in several tube bends were found. BAM was commissioned to carry out the investigations in order to find out the reasons for the failure of the tubes. During on-site inspection a number of relevant damaged components and parts were selected and taken away to the laboratories for detailed inspection. Planned analyses were to comprise metallographic as well as fractographic investigations, mechanical fatigue testing and experimental as well as finite element vibration analyses on specimens and components. Soon, the fracture mechanism was found to be mechanical fatigue due to the fact that the examined fracture surfaces showed the very characteristic beachmarks and colouring patterns. To identify the particular loading and time at which crack initiation and crack propagation took place, experimental and numerical vibration analyses of specific tubes as well as mechanical fatigue tests on tube bends were carried out. Thus it was possible to identify the eigenfrequencies of individual tubes, to estimate the dynamic response as well as the nominal stresses and, hence, experimentally characterise the in-service fatigue strength of the components. Mechanical and thermal comparative tests on tube bends were performed simulating the conditions during the initial test run in order to get crack surfaces comparable to that of the originally damaged components. Thereby it became obvious that the fatigue cracks were initiated by vibrations the tube bundles were exposed to during rail transport from the manufacturer’s site to the place of installation. Based on these results, the damaged components could be repaired or exchanged without modification of the construction, but the rules relating packaging and securing for shipping had to be revised. KW - Steam generator KW - Fatigue failure KW - Vibration analysis KW - Vibrations due to shipping KW - Transport failure KW - Fatigue PY - 2014 U6 - https://doi.org/10.1016/j.engfailanal.2013.12.005 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 253 EP - 270 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31490 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klingbeil, Dietmar A1 - Klinger, Christian A1 - Kinder, J. A1 - Baer, Wolfram T1 - Investigations for indications of deliberate blasting on the front bulkhead of the ro-ro ferry MV Estonia N2 - The roll-on-roll-off passenger ferry MV ESTONIA sank during the night of 28 September 1994 in the Baltic Sea. In October 2000, divers recovered two palm-sized test pieces from the front bulkhead of the wreck. The investigators analysed these specimens to determine whether there were any indications of deliberate blasting. Since the wreck had been submerged for almost six years, it was clear that chemical traces would not be present on the surfaces of the test pieces. Therefore, the investigators performed comparative tests on shipbuilding steel to find a microstructural criterion that exclusively characterises a blast. The shipyard Jos. L. Meyer, Germany, had built the ESTONIA and supplied shipbuilding steel plates similar to that used for building the vessel in 1979/1980. The comparative tests comprised mechanical tests, shot peening tests and blasting tests using different explosives. Testing demonstrated that blasting always formed twinned ferrite grains in the microstructure over the whole cross-section of each of the 8 mm thick comparative plates. Although one of the original test pieces of the ESTONIA showed deformation twins, this was only confined up to 0.4 mm underneath the surfaces and not spread over the whole cross-section. Comparative shot peening tests produced the very same pattern of subsurface deformation twins. Therefore, the twins detected in the microsection of the test pieces of the ESTONIA wreck traced back to the shot peening process performed by the shipyard in 1979/1980 and not to a deliberate blast. KW - Investigations on parts of a ship wreck KW - Comparative blasting tests KW - Metallographic analyses of shipbuilding steel KW - Derivation of microstructural criteria for blasting KW - Deformation twins PY - 2014 U6 - https://doi.org/10.1016/j.engfailanal.2014.03.016 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 186 EP - 197 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31291 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klinger, Christian T1 - Failures of cranes due to wind induced vibrations N2 - Self-excited vibrations with large amplitudes in natural wind may occur at slender structural elements with low damping. Because of the different designs (e. g. using solid sections today instead of cables for tension elements in the past) the susceptibility to wind induced oscillations has increased. Those wind induced vibrations of profiles with specific cross section geometry which are motion induced and therefore self-exciting are called 'galloping vibrations'. Especially systems with elements that are highly tensile loaded and undamped, like hangers of bridges or tension bars of cranes, are sensitive to wind induced vibrations. Therefore more and more fatigue problems caused by galloping oscillations have occurred in the 1990s. This paper describes exemplary the collapses of two modern cranes of different design and manufacturers. During standstill periods, both cranes suffered from wind induced vibrations of the tension bars, which bear up the counterweights. The failure analysis process to identify and explain the fatigue fractures as well as the comparative experiments and simulation to verify that they were caused by wind induced galloping-vibrations is described. It is shown, which parameters led to galloping-vibrations of the tension bars and how their onset wind speed and the amplitudes can be estimated with more accuracy by a non-linear and non-stationary approach. Furthermore it is shown that such dynamic stresses caused fatigue failure of the tension bars for the counter weights and subsequently collapsing of the cranes. For loss prevention knowledge and results gained by these investigations should be put at disposal to engineers working on this field of design. In the meantime, a contribution to development of appropriate technical standards on structural steelwork was given by the research works on galloping. Although new standards were introduced, which consider wind induced vibrations, such failures still occur. (Reference to the paper 'Fatigue crack in railway bridge hanger due to wind induced vibrations – failure analysis, measures and remaining service life estimation' in this same Special Issue 'A tribute to A. Martens' 2014). KW - Wind induced galloping vibrations KW - Onset wind speed KW - Undamped structural elements KW - Crane tension bars KW - Fatigue fracture PY - 2014 U6 - https://doi.org/10.1016/j.engfailanal.2013.12.007 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special issue: 'A tribute to A. Martens' SP - 198 EP - 220 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31595 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klinger, Christian A1 - Bohraus, Stefan T1 - 1992 Northeim train crash - A root cause analysis N2 - Shortly after midnight on 15th November 1992, a severe train crash was caused by the break off of a buffer from a tool and gear wagon of a freight train. The buffer fell between the rails, tumbled, and then lifted one axle of a following freight wagon off the rails. Several freight wagons derailed in the station of Northeim, Germany, blocking the adjacent track. A night train travelling on that blocked track was already too close (only 180 m) to stop, despite emergency braking initiated immediately and automatically by the track signalling system. When the night train crashed into the freight wagons, some of its coaches were heavily damaged. Eleven people were killed, and 51 injured, some of them seriously. The task for failure analysts was to find out why the buffer broke off from the front frame of the tool and gear wagon. Therefore, the material of the attachment, the front frame, and the welds were tested. Chemical composition, hardness, and microstructure were allowable. The welds showed imperfections which were determined not to be causal. The fracture surfaces had graded corrosion – which again was not causal – and beach marks that depicted fatigue cracks before final fracture. The cause for the break off was the fact that the front frame had been repaired at this same buffer attachment some years before and that the repair patch used was thinner than the original front frame profile. Additionally, the force characteristics of the buffer showed reduced stroke but increased forces which was due to several friction springs that had been broken for a long time. The buffer forces in service were assessed from standards, literature, and the deformations of the attachment. The in-service stresses at the welds were estimated using FEM analysis. High cyclic stresses at the welds resulted in fatigue cracking and finally break off of the attachment with the buffer. KW - Buffer break off KW - Northeim train crash (Germany) KW - Friction spring fatigue fractures KW - Lamellar tearing KW - Disastrous coaction of events PY - 2014 U6 - https://doi.org/10.1016/j.engfailanal.2013.10.004 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 171 EP - 185 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31594 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klinger, Christian A1 - Michael, Thomas A1 - Bettge, Dirk T1 - Fatigue cracks in railway bridge hangers due to wind induced vibrations - Failure analysis, measures and remaining service life estimation N2 - Unexpected wind-induced vibrations of the hangers have caused an early fatigue crack on specific steel components and joints of a railway bridge over the Elbe River at Lutherstadt Wittenberg, Germany. During regular periodic inspection a fatigue crack of approximately 240 mm length was found near a butt weld of the longest hanger. The hanger was immediately secured by welded butt straps across the crack. Based on experimental investigations of hanger vibrations additional bracings were added between the hangers to avoid wind-induced vibrations. The weld heat influence zone which was affected by high cyclic stresses was replaced by new material. Nevertheless it was impossible to determine sufficient remaining service life for those remaining bridge components that were exposed to extreme high real load cycles. The grinding of the affected steel surfaces was the key element of the remedial actions. Furthermore, additional fracture mechanic calculations were carried out in order to assess the remaining service life of the welded joints. In this respect, the calculation approach used by Deutsche Bahn AG was compared to further procedures from the mechanical engineering field. These investigations showed that the studied, repaired components have both, bearing and fatigue capacities within the validity of standards. KW - Bridge hangers KW - Wind induced vibrations KW - Undamped structural elements KW - Fatigue crack KW - Remaining service life PY - 2014 U6 - https://doi.org/10.1016/j.engfailanal.2014.02.019 SN - 1350-6307 SN - 1873-1961 VL - 43 IS - Special Issue 'A Tribute to Prof. A. Martens' SP - 232 EP - 252 PB - Elsevier Science Publ. CY - Oxford AN - OPUS4-31318 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Zerbst, Uwe A1 - Klinger, Christian T1 - Anmerkungen zur Auslegung und zum sicheren Betrieb von Radsatzwellen aus der Sicht von Betriebsfestigkeit und Bruchmechanik N2 - Die Sicherheit von Radsatzwellen beruht gegenwärtig auf zwei Säulen: der Schwingfestigkeitsauslegung und periodischen Inspektionen. Ausgehend von einem Schadensfall, der gebrochenen ICE 3-Welle von Köln, 2008, werden ausgewählte Aspekte dieser beiden Säulen diskutiert und Vorschläge zur weiteren Verbesserung gemacht. Diese betreffen u. a. Fragen einer Betriebszeitbegrenzung, Veränderungen der Schwingfestigkeit während des Betriebs infolge von Korrosion und Steinschlag, den Einfluss von Korrosion auf Schwingrissinitiierung und -fortschritt, den potenziellen Einfluss nichtmetallischer Einschlüsse auf die Schwingfestigkeit, die Möglichkeiten, sie im Rahmen der Qualitätssicherung zu detektieren, sowie Fragen der Bruchmechanik und der Zuverlässigkeit zerstörungsfreier Schwingriss-Prüfverfahren im Rahmen eines Konzepts regelmäßiger Inspektionen. KW - Radsatzwellen KW - Schwingfestigkeit KW - Sichere Lebensdauer KW - Schadenstoleranz KW - Zerstörungsfreie Inspektion KW - Korrosion KW - Steinschlag KW - Nichtmetallische Einschlüsse PY - 2014 U6 - https://doi.org/10.3139/120.110593 SN - 0025-5300 VL - 56 IS - 7-8 SP - 528 EP - 534 PB - Hanser CY - München AN - OPUS4-31355 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -