TY - JOUR A1 - Klingbeil, Patrick A1 - Vogl, Jochen A1 - Pritzkow, Wolfgang A1 - Riebe, Gundel A1 - Müller, J. T1 - Comparative studies on the certification of reference materials by ICPMS and TIMS using isotope dilution procedures N2 - A comparison of different isotope dilution mass spectrometric (IDMS) procedures using inductively coupled plasma mass spectrometry (ICPMS) and thermal ionization mass spectrometry (TIMS) was carried out to examine the degree of equivalence between the used procedures in terms of requirements for reference material certification. The comparison was based on the measurement results and their uncertainties. The sample used in this study is a pure zinc metal to be certified by the Bureau Communie de Référence (BCR) for amount contents of different trace elements. This study focuses on cadmium and thallium. The TIMS values contributed to the certified values. To guarantee identical conditions as far as possible for the procedures under investigation, the samples were split into subsamples after spiking and digestion took place. Thus, every IDMS procedure started with an identical set of samples. In total, four different IDMS procedures and one external calibration procedure using internal standardization as an example of routine analysis were applied. The IDMS procedures divide in a group with and a group without trace/matrix separation. Multicollector TIMS (TI-MC-MS) and multicollector ICPMS (ICP-MC-MS) were used in combination with trace/matrix separation, whereas quadrupole ICPMS (ICP-QMS) and ICP-MC-MS were also applied to nonseparated samples. All IDMS results agree well within their combined uncertainties, while some results from the external calibration procedure do not. IDMS results obtained by ICPMS without separation are comparable to those obtained by TI-MC-MS with separation regarding precision and accuracy. The smallest uncertainties were achieved using ICP-MC-MS in combination with trace/matrix separation. KW - ICP-MS KW - TIMS KW - IDMS KW - multi-collector KW - uncertainty budget KW - Certification KW - reference material PY - 2001 U6 - https://doi.org/10.1021/ac001278c SN - 0003-2700 SN - 1520-6882 VL - 73 IS - 8 SP - 1881 EP - 1888 PB - American Chemical Society CY - Washington, DC AN - OPUS4-909 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Pritzkow, Wolfgang A1 - Vogl, Jochen A1 - Berger, Achim A1 - Ecker, Klaus A1 - Grötzschel, R. A1 - Klingbeil, Patrick A1 - Persson, L. A1 - Riebe, Gundel A1 - Wätjen, U. T1 - Contribution of ICP-IDMS to the certification of antimony implanted in a silicon wafer - comparison with RBS and INAA results N2 - A thin-layer reference material for surface and near-surface analytical methods was produced and certified. The surface density of the implanted Sb layer was determined by Rutherford backscattering spectrometry (RBS), instrumental neutron activation analysis (INAA), and inductively coupled plasma isotope dilution mass spectrometry (ICP-IDMS) equipped with a multi-collector. The isotopic abundances of Sb (121Sb and 123Sb) were determined by multi-collector ICP-MS and INAA. ICP-IDMS measurements are discussed in detail in this paper. All methods produced values traceable to the SI and are accompanied by a complete uncertainty budget. The homogeneity of the material was measured with RBS. From these measurements the standard uncertainty due to possible inhomogeneities was estimated to be less than 0.78% for fractions of the area increments down to 0.75 mm2 in size. Excellent agreement between the results of the three different methods was found. For the surface density of implanted Sb atoms the unweighted mean value of the means of four data sets is 4.8121016 cm-2 with an expanded uncertainty (coverage factor k=2) of 0.0921016 cm-2. For the isotope amount ratio R (121Sb/123Sb) the unweighted mean value of the means of two data sets is 1.435 with an expanded uncertainty (coverage factor k=2) of 0.006. KW - ICP-MS KW - IDMS KW - Reference material KW - Surface analysis PY - 2001 U6 - https://doi.org/10.1007/s002160100987 SN - 0937-0633 VL - 371 SP - 867 EP - 873 PB - Springer CY - Berlin AN - OPUS4-7220 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -