TY - CONF A1 - Klewe, Tim T1 - Zerstörungsfreie Lokalisierung von Flüssigwasser in Schichtaufbauten - Projektvorstellung N2 - Da derzeit keine zerstörungsfreie Alternative zur Lokalisierung von Leitungswasserschäden in Fußböden existiert, werden in der Regel unter hohem zeitlichen und finanziellen Aufwand Sondierungsbohrungen vorgenommen, um das entnommene Material im Labor thermo-gravimetrisch zu untersuchen. Dabei nehmen Leitungswasserschäden mit rd. 2,6 Milliarden Euro jährlich den deutlich größten Posten bei Gebäudeversicherungen ein. Für derartige Fragestellungen werden seit einigen Jahren Neutronensonden eingesetzt. Mit diesem Verfahren ist es möglich, sich einen Überblick über die Gesamtwassermenge in einem definierten Baustoffvolumen zu verschaffen, jedoch kann flüssiges und chemisch gebundenes Wasser nicht unterschieden werden. Daher werden die Messdaten mit den Ergebnissen der Sondierungsbohrungen kalibriert. So können auch große Flächen wie Industriefußböden in relativ kurzer Zeit größtenteils zerstörungsfrei untersucht werden. Da die integrale Messweise der Neutronensonde allerdings keine Tiefenzuordnung eines gefundenen Feuchteschadens zulässt, muss auch diese Information über die Bohrkerne generiert werden. Die Idee des Projekts ist, durch den parallelen Einsatz des Radarverfahrens in Zukunft auf Sondierungsbohrungen verzichten zu können. Nach der Abgrenzung trockener von feuchten Bereichen über die Neutronensonde, wird das Radarverfahren herangezogen, um typische Schadensfälle zerstörungsfrei zu unterscheiden. In systematischen Laborstudien an modular aufgebauten Referenzprobekörpern untersuchen wir die Nachweisgrenzen und Detektionswahrscheinlichkeiten der beiden Verfahren für verschiedene, häufig anzutreffende Fußbodenaufbauten. Anschließend sollen über Datenfusion und Signalverarbeitung innovative Auswertungsansätze entwickelt werden, welche die Messergebnisse von Neutronensonde und Radar automatisiert zur Gewinnung eines höheren Informationsgehalts und zur Klassifizierung der Schadensfälle kombinieren. Im Rahmen des Projekts wird die erarbeitete Vorgehensweise an real geschädigten Objekten getestet, um die Methode zu etablieren sowie Akzeptanz bei Anwendern und Eigentümern zu schaffen. Könnten durch genauere Schadenseingrenzung die Sanierungskosten um nur 4% gesenkt werden, ergäbe sich in Deutschland eine Kostenreduzierung von ca. 100 Million Euro jährlich. T2 - Bauwerksdiagnose 2018 CY - Berlin, BAM, Germany DA - 15.02.2018 KW - Feuchte KW - ZfP KW - Radar KW - Neutronensonde KW - Fußboden PY - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-446458 AN - OPUS4-44645 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Multivariate Auswertung von Radarsignalen zur Bestimmung typischer Feuchteschäden in Fußböden N2 - Leitungswasserschäden nahmen im Jahr 2018 mit rund 2,9 Milliarden Euro den größten Posten bei Gebäudeversicherungen ein und verursachten damit mehr Kosten, als Elementar-, Feuer, Sturm- und Hagelschäden zusammen. Neutronensonden helfen hier bereits bei der horizontalen Eingrenzung eines Feuchteschadens, wobei die vertikale Unterscheidung betroffener Schichten nur durch die zerstörende Entnahme von Bohrkernen vorgenommen werden kann. Der parallele Einsatz des Radarverfahrens soll hier mit seiner hohen Sensitivität für Wasser künftig zu einem erhöhten Informationsgehalt beitragen und eine kostengünstigere Schadensdiagnose und Planung der Reparaturmaßnahmen ermöglichen. In einem laufenden Forschungsvorhaben werden in systematischen Laborstudien gängige Schadensfälle an häufig anzutreffenden Fußbodenaufbauten simuliert und deren Einfluss auf das Radarverfahren untersucht. Die Bewertung der Schadensträchtigkeit zugeführter Wassermengen erfolgt mithilfe von Luftfeuchtesensoren, welche in der Dämmebene platziert sind. Beim Aufbau der Fußbodenstrukturen kommen Zement- und Anhydritestriche, sowie die Dämmmaterialen Styropor, Styrodur, Glaswolle und Perlite-Schüttung mit variierenden Schichtdicken zum Einsatz. Die Robustheit der zu entwickelnden Messmethode gegenüber derartig verschiedenen und in der Praxis häufig unbekannten Schichtstrukturen stellt eine besondere Herausforderung dar und soll durch den Einsatz multivariater Datenauswertung erhöht werden. Diesbezüglich empfehlen bisherige Ergebnisse die Betrachtung der örtlichen Verteilungen qualitativer Signalmerkmale wie Amplituden, Laufzeiten und Frequenzen im Radargramm (B-Scan). Deren Eignung für reale Schadensfälle außerhalb der Laborumgebung wird hierbei stets kritisch hinterfragt und soll weiterführend an Praxiseinsätzen validiert werden. T2 - 80. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Online Meeting DA - 18.05.2020 KW - Radar KW - Feuchte KW - Fußboden KW - Multivariate Datenauswertung PY - 2020 AN - OPUS4-50862 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim T1 - Signalmerkmale des Radarverfahrens zur Klassifizierung von Feuchteschäden in Fußbodenaufbauten N2 - Zur Eingrenzung und Klassifizierung auftretender Feuchteschäden in geschichteten Fußbodenaufbauten wird bereits seit vielen Jahren das Neutronensondenverfahren eingesetzt. Während eine Eingrenzung des Schadens bereits durch die zerstörungsfrei aufgenommenen Messdaten möglich ist, erfordert die Klassifizierung zeit- und kostenintensive Sondierungsbohrungen. Die somit gewonnenen Tiefeninformationen zur Lage des Flüssigwassers tragen maßgeblich zur Planung der erforderlichen Reparaturarbeiten bei, was die Frage nach einer zerstörungsfreien Alternative zur vertikalen Lokalisierung von Feuchte in Fußböden stellt. Das Radarverfahren ist mit seiner hohen Sensitivität für Wasser besonders geeignet und soll künftig zur automatisierten Klassifizierung typischer Schadensfälle beitragen. In einem laufenden Forschungsvorhaben werden in systematischen Laborstudien gängige Schadensfälle an häufig anzutreffenden Fußbodenaufbauten simuliert und deren Einfluss auf die genannten Verfahren untersucht. Hierbei kommen Zement- und Anhydritestriche, sowie unterschiedliche Dämmmaterialen mit variierenden Schichtdicken zum Einsatz. Wesentlicher Bestandteil der Auswertung ist die Extraktion signifikanter Signalmerkmale des Radarverfahrens, welche Rückschlüsse auf den Schadensfall und ggf. die Wassermenge zulassen. Die Robustheit gegenüber unterschiedlichsten Aufbauten mit wechselnden Schichtdicken und Materialien steht hierbei besonders im Fokus. Erste Ergebnisse empfehlen die Betrachtung der örtlichen Verteilung bestimmter Signalmerkmale im Radargramm (B-Scan), um eine Klassifizierung der Schadensfälle vornehmen zu können. T2 - Fachtagung Bauwerksdiagnose 2020 CY - Berlin, Germany DA - 13.02.2020 KW - Radar KW - Feuchte KW - Signalmerkmale KW - Klassifikation PY - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-504143 AN - OPUS4-50414 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine ED - Littmann, K. T1 - Zerstörungsfreie Lokalisierung von Flüssigwasser in Fußböden durch Kombination von Radar und Neutronensonde N2 - Das Neutronensondenverfahren wird bereits seit vielen Jahren erfolgreich zur Eingrenzung und Quantifizierung auftretender Feuchteschäden an Fußböden eingesetzt. Hierzu bedarf es jedoch einer Vielzahl zerstörender Sondierungsbohrungen, welche die gewonnenen Messdaten kalibrieren und eine Tiefenzuordnung des Flüssigwassers zulassen. Dadurch entsteht ein zeitlicher und finanzieller Aufwand, der durch den parallelen Einsatz des elektromagnetischen Radarverfahrens vermieden werden könnte. Mit seiner hohen Sensitivität für Wasser bietet diese Messmethode die Möglichkeit der vertikalen Lokalisierung von Feuchte, was zu einer automatisierten Klassifizierung typischer Schadensfälle beitragen soll. In einem laufenden Forschungsvorhaben werden in systematischen Laborstudien gängige Schadensfälle an häufig anzutreffenden Fußbodenaufbauten simuliert und deren Einfluss auf die genannten Verfahren untersucht. Hierbei kommen Zement- und Anhydritestriche, sowie unterschiedliche Dämmmaterialen mit variierenden Schichtdicken zum Einsatz. Wesentlicher Bestandteil der Auswertung ist die Extraktion signifikanter Signalmerkmale des Radarverfahrens, welche Rückschlüsse auf den Schadensfall und ggf. die Wassermenge zulassen. Weiterführend sollen die Kombinationsmöglichkeiten der verschiedenen Signalmerkmale und der Neutronensondendaten durch Methoden der multivariaten Datenauswertung und des maschinellen Lernens geprüft werden. Die Unabhängigkeit gegenüber wechselnden Schichtdicken und Materialien steht hierbei besonders im Fokus und soll anhand der erzielten Ergebnisse evaluiert werden. T2 - 10. Kolloquium Industrieböden - Fachtagung über stark beanspruchte Bodenkonstruktionen CY - Esslingen, Germany DA - 03.03.2020 KW - Radar KW - Feuchte KW - Neutronensonde PY - 2020 SN - ISBN 978-3-8169-8505-1 (ePDF) SN - ISBN 978-3-8169-3505-6 (Print) SP - 179 EP - 185 PB - Expert Verlag CY - Tübingen AN - OPUS4-50589 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Nondestructive determination of moisture damage in layered building floors N2 - In this ongoing research project, we study the influence of moisture damage on Ground Penetrating Radar (GPR) in different floor constructions. For this purpose, a measurement setup with interchangeable layers is developed to vary the screed material (cement or anhydrite) and insulation material (glass wool, perlite, expanded and extruded polystyrene), as well as the respective layer thickness. The evaluation of the 2 GHz common-offset radar measurements is focused on the extraction of distinctive signal features that can be used to classify the underlying case of damage without any further information about the hidden materials or layer thicknesses. In the collected dataset, we analyze the horizontal distribution of A-scan features in corresponding B-scans to detect water in the insulation layer. Furthermore, possible combinations of these features are investigated with the use of multivariate data analysis and machine learning (logistic regression) in order to evaluate the mutual dependencies. In this study, the combination of an amplitude- and frequency-based feature achieved an accuracy of 93.2 % and performed best to detect a damage in floor insulations. T2 - 18th International Conference on Ground Penetrating Radar CY - Meeting was canceled DA - 14.07.2020 KW - Radar KW - Feuchte KW - Moisture KW - Building floors PY - 2020 U6 - https://doi.org/10.1190/gpr2020-045.1 SN - 2159-6832 SP - 164 EP - 167 AN - OPUS4-51575 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Review of moisture measurements in civil engineering with ground penetrating radar – Applied methods and signal features N2 - When applying Ground Penetrating Radar (GPR) to assess the moisture content of building materials, different medium properties, dimensions, interfaces and other unknown influences may require specific strategies to achieve useful results. Hence, we present an overview of the various approaches to carry out moisture measurements with GPR in civil engineering (CE). We especially focus on the applied Signal features such as time, amplitude and frequency features and discuss their limitations. Since the majority of publications rely on one single feature when applying moisture measurements, we also hope to encourage the consideration of approaches that combine different signal features for further developments. KW - Ground Penetrating Radar KW - Moisture KW - Civil engineering KW - Signal features PY - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-520684 VL - 278 SP - 122250 PB - Elsevier Ltd. AN - OPUS4-52068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - GEN A1 - Strangfeld, Christoph A1 - Klewe, Tim ED - Rizzo, P. ED - Milazzo, A. T1 - Hygrometric Moisture Measurements Based on Embedded Sensors to Determine the Mass of Moisture in Porous Building Materials and Layered Structures N2 - Subfloors are layered structures, consisting largely of porous building materials, such as screed. They are often suffering damage from tap water leakage, which is a typical problem in buildings, and which has largely contributed to repair costs of almost 3 billion Euro in 2018 alone in Germany. In this context, especially mould plays a role, which is both destroying the structure and posing severe health risks. To determine the damaging effects of moisture, it is necessary to know the respective processes occurring in building materials, especially to quantify the amount of moisture and its progress in the material. In this study, humidity sensors are used to derive the material moisture experimentally. Capacitive sensors recording the relative humidity are embedded into the screed and in the insulation materials such as expanded polystyrene, extruded polystyrene, perlite and glass wool. For the application in screed, the sensors need to be shielded against the aggressive alkaline materials. To ensure an appropriate exchange with the environment, a permeable membrane is requested. Different membrane materials have been investigated regarding their robustness and their permeability. In the first experimental setup, two humidity sensor arrays with seven individual sensors are embedded in homogeneous screed samples. The measured corresponding relative humidity of the screed is converted to the material moisture based on the approach of Hillerborg. In a second experimental setup, a layered structure of a complete subfloor is built in a box of 0.8 m times 0.8 m. The humidity sensors are positioned in the different insulation materials of various thicknesses. By adding water, leakage damage is simulated and its progress and effect is investigated experimentally. The investigations point at the question if the observed moisture is able to generate damage such as mould. The moisture and corresponding humidity values are discussed. It will be shown that this low-cost hygrometric approach can be used easily for moisture monitoring of screed and insulation materials as well KW - Moisture monitoring KW - Material moisture KW - Building materials KW - Embedded humidity sensors PY - 2021 U6 - https://doi.org/10.1007/978-3-030-64594-6_22 VL - 1 SP - 213 EP - 225 PB - Springer Nature CY - Cham AN - OPUS4-52013 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Ritzer, Tobias A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Radarwellen und Neutronenstrahlung - Die Lösung für den Großschaden? Ergebnisse aus dem Forschungsprojekt zur Feuchtebestimmung von schwimmenden Bodenaufbauten N2 - Die Idee des Dissertationsprojekts ist der parallele Einsatz des Radarverfahrens und der Neutronensonde zur Lokalisierung von Feuchteschäden in Fußbodenaufbauten. Hierbei soll die integrale Messweise der Neutronensonde durch die vertikale Information des Radarsignals ergänzt werden, um zukünftig auf zerstörende Sondierungsbohrungen verzichten zu können. Primäres Ziel ist eine automatisierte und zerstörungsfreie Klassifizierung und Quantifizierung verschiedener Schadensfälle im Fußboden, welche zur Abschätzung und Auswahl des Sanierungsaufwands dienen soll. In systematischen Laborstudien an modular aufgebauten Referenzprobekörpern werden die Nachweisgrenzen der beiden Verfahren für unterschiedliche, häufig anzutreffende Fußbodenaufbauten untersucht. Hierfür wurde ein Satz verschiedenster Estrichprobekörper gefertigt und deren Hydratisierungsprozess gravimetrisch und mit den benannten Feuchtemessverfahren beobachtet. In der laufenden Auswertung konnten bereits signifikante Signalmerkmale der Radarmessungen extrahiert, sowie dessen Korrelation zum Feuchteverlauf der Proben gezeigt werden. Der modulare Aufbau der Fußbodenschichten zur Simulation von gängigen Feuchteschäden folgt im Anschluss. Über Datenfusion und Signalverarbeitung sollen so innovative Auswertungsansätze entwickelt und deren Validität an realen Schadensfällen geprüft werden. T2 - Messekongress Schadenmanagement und Assistance CY - Leipzig, Germany DA - 26.03.2019 KW - Radar KW - Neutronensonde KW - Feuchte KW - Schichtaufbau PY - 2019 AN - OPUS4-47684 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Untersuchung von Signalmerkmalen des Radarverfahrens zur Feuchtemessung an Estrichen N2 - Das elektromagnetische Radarverfahren ist mit seiner starken Sensitivität für Wasser längst eine etablierte Methode zur zerstörungsfreien Feuchtemessung. Besonders bei geophysikalischen Aufgabenstellungen erfreut es sich großer Beliebtheit, doch auch an Baustoffen wird es immer häufiger zur Ortung von schadensträchtigem Wasser eingesetzt. Somit liefert die Literatur bereits zahlreiche Signalmerkmale, welche einen Rückschluss auf die Feuchte des untersuchten Mediums zulassen. Die Eignung dieser Signalmerkmale zur Messung an Estrichen wurde in Laborstudien anhand des Austrocknungsprozesses nach der Herstellung untersucht. Hierbei kamen zement- und anhydritgebundene Estriche unterschiedlicher Schichtdicke zum Einsatz, wobei die Darr- und die Calciumcarbid-Methode als Referenzverfahren dienten. In der Auswertung erwiesen sich besonders die klassischen Merkmale aus dem Zeitbereich (Amplitude, Laufzeit) als robuste Methoden zur Feuchtemessung. Bei kleinen Schichtdicken und niedrigen Feuchtegehalten ist die Auswertung der klassischen Merkmale jedoch fehleranfällig, v.a. weil die (automatisierte) Separierung von direkter und Reflexionswelle nicht mehr eindeutig ist. Dies wirkt sich besonders auf die jeweiligen Frequenzanteile aus, die i.d.R. nicht zu den klassischen Feuchte-Merkmalen gehören. In weiterführenden Untersuchungen soll der Mehrwert durch multivariate Datenauswertung und Ansätze des maschinellen Lernens geprüft werden. Übergeordnetes Ziel ist der Einsatz des Radarverfahrens an geschichteten Fußbodenaufbauten zur automatisierten und zerstörungsfreien Lokalisierung von Feuchteschäden. T2 - 79. Jahrestagung der Deutschen Geophysikalischen Gesellschaft CY - Brunswick, Germany DA - 04.03.2019 KW - Radar KW - Feuchte KW - Fußboden KW - Signalmerkmale PY - 2019 AN - OPUS4-47525 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Klewe, Tim T1 - Zerstörungsfreie Lokalisierung von Flüssigwasser in Schichtaufbauten N2 - Die Idee des Dissertationsprojekts ist der parallele Einsatz des Radarverfahrens und der Neutronensonde zur Lokalisierung von Feuchteschäden in Fußbodenaufbauten. Hierbei soll die integrale Messweise der Neutronensonde durch die vertikale Information des Radarsignals ergänzt werden, um zukünftig auf zerstörende Sondierungsbohrungen verzichten zu können. Primäres Ziel ist eine automatisierte und zerstörungsfreie Klassifizierung und Quantifizierung verschiedener Schadensfälle im Fußboden, welche zur Abschätzung und Auswahl des Sanierungsaufwands dienen soll. In systematischen Laborstudien an modular aufgebauten Referenzprobekörpern werden die Nachweisgrenzen der beiden Verfahren für unterschiedliche, häufig anzutreffende Fußbodenaufbauten untersucht. Hierfür wurde ein Satz verschiedenster Estrichprobekörper gefertigt und deren Hydratisierungsprozess gravimetrisch und mit den benannten Feuchtemessverfahren beobachtet. In der laufenden Auswertung konnten bereits signifikante Signalmerkmale der Radarmessungen extrahiert, sowie dessen Korrelation zum Feuchteverlauf der Proben gezeigt werden. Der modulare Aufbau der Fußbodenschichten zur Simulation von gängigen Feuchteschäden folgt im Anschluss. Über Datenfusion und Signalverarbeitung sollen so innovative Auswertungsansätze entwickelt und deren Validität an realen Schadensfällen geprüft werden. T2 - Doktorandenseminar BAM Abt. 8 CY - Berlin, Germany DA - 25.02.2019 KW - Radar KW - Feuchte KW - Fußboden KW - Signalmerkmale KW - Datenfusion KW - Maschinelles Lernen PY - 2019 AN - OPUS4-47526 LA - deu AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -