TY - JOUR A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Ritzer, Tobias A1 - Kruschwitz, Sabine T1 - Combining Signal Features of Ground-Penetrating Radar to Classify Moisture Damage in Layered Building Floors JF - Applied Sciences N2 - To date, the destructive extraction and analysis of drilling cores is the main possibility to obtain depth information about damaging water ingress in building floors. The time- and costintensive procedure constitutes an additional burden for building insurances that already list piped water damage as their largest item. With its high sensitivity for water, a ground-penetrating radar (GPR) could provide important support to approach this problem in a non-destructive way. In this research, we study the influence of moisture damage on GPR signals at different floor constructions. For this purpose, a modular specimen with interchangeable layers is developed to vary the screed and insulation material, as well as the respective layer thickness. The obtained data set is then used to investigate suitable signal features to classify three scenarios: dry, damaged insulation, and damaged screed. It was found that analyzing statistical distributions of A-scan features inside one B-scan allows for accurate classification on unknown floor constructions. Combining the features with multivariate data analysis and machine learning was the key to achieve satisfying results. The developed method provides a basis for upcoming validations on real damage cases. KW - Radar KW - Material Moisture KW - Non-destructive testing KW - Signal Features KW - Civil Engineering KW - Machine Learning PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-533606 DO - https://doi.org/10.3390/app11198820 VL - 11 IS - 19 SP - 8820 PB - MDPI AN - OPUS4-53360 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Klewe, Tim A1 - Strangfeld, Christoph A1 - Kruschwitz, Sabine T1 - Review of moisture measurements in civil engineering with ground penetrating radar – Applied methods and signal features JF - Construction and Building Materials N2 - When applying Ground Penetrating Radar (GPR) to assess the moisture content of building materials, different medium properties, dimensions, interfaces and other unknown influences may require specific strategies to achieve useful results. Hence, we present an overview of the various approaches to carry out moisture measurements with GPR in civil engineering (CE). We especially focus on the applied Signal features such as time, amplitude and frequency features and discuss their limitations. Since the majority of publications rely on one single feature when applying moisture measurements, we also hope to encourage the consideration of approaches that combine different signal features for further developments. KW - Ground Penetrating Radar KW - Moisture KW - Civil engineering KW - Signal features PY - 2021 UR - https://nbn-resolving.org/urn:nbn:de:kobv:b43-520684 DO - https://doi.org/10.1016/j.conbuildmat.2021.122250 VL - 278 SP - 122250 PB - Elsevier Ltd. AN - OPUS4-52068 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -