TY - JOUR A1 - Barthel, Anne-Kathrin A1 - Wesch, Ch. A1 - Braun, Ulrike A1 - Klein, R. A1 - Paulus, M. T1 - No microplastics in benthic eelpout (Zoarces viviparus): An urgent need for spectroscopic analyses in microplastic detection N2 - Monitoring the ingestion of microplastics is challenging and suitable detection techniques are insufficiently used. Thus, misidentifying natural for synthetic microfibres cannot be avoided. As part of a framework to monitor the ingestion of microplastics in eelpout, this short report addresses the accurate identification of microfibres. We show that, following visual inspections, putatively synthetic microfibres are indeed of natural origin, as ascertained by spectrometric analyses. Consequently, we call for an inclusion of spectroscopic techniques in standardized microplastic monitoring schemes. KW - Monitoring KW - Ingestion KW - Misidentification KW - Microfibre KW - Spectroscopy PY - 2016 U6 - https://doi.org/10.1016/j.envres.2016.03.017 SN - 0013-9351 VL - 148 SP - 36 EP - 38 PB - Elsevier AN - OPUS4-35603 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Wesch, Ch. A1 - Elert, Anna Maria A1 - Wörner, M. A1 - Braun, Ulrike A1 - Klein, R. A1 - Paulus, M. T1 - Assuring quality in microplastic monitoring: About the value of clean-air devices as essentials for verified data N2 - Avoiding aerial microfibre contamination of environmental samples is essential for reliable analyses when it comes to the detection of ubiquitous microplastics. Almost all laboratories have contamination problems which are largely unavoidable without investments in clean-air devices. Therefore, our study supplies an approach to assess background microfibre contamination of samples in the laboratory under particle-free air conditions. We tested aerial contamination of samples indoor, in a mobile laboratory, within a laboratory fume hood and on a clean bench with particles filtration during the examining process of a fish. The used clean bench reduced aerial microfibre contamination in our laboratory by 96.5%. This highlights the value of suitable clean-air devices for valid microplastic pollution data. Our results indicate, that pollution levels by microfibres have been overestimated and actual pollution levels may be many times lower. Accordingly, such clean-air devices are recommended for microplastic laboratory applications in future research work to significantly lower error rate KW - Microplastics KW - FTIR KW - Quality KW - Environmental Science KW - Biological techniques PY - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-412402 SN - 2045-2322 VL - 7 SP - Article 5424, 1 EP - 8 PB - Nature AN - OPUS4-41240 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -