TY - JOUR A1 - Kimani, Martha Wamaitha A1 - Kislenko, Evgeniia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymer particles for glyphosate detection using phase transfer agents N2 - In this work, molecular imprinting was combined with direct fluorescence detection of the pesticide Glyphosate (GPS). Firstly, the solubility of highly polar GPS in organic solvents was improved by using lipophilic tetrabutylammonium (TBA+) and tetrahexylammonium (THA+) counterions. Secondly, to achieve fluorescence detection, a fluorescent crosslinker containing urea-binding motifs was used as a probe for GPS-TBA and GPS-THA salts in chloroform, generating stable complexes through hydrogen bond formation. The GPS/fluorescent dye complexes were imprinted into 2–3 nm fluorescent molecularly imprinted polymer (MIP) shells on the surface of sub-micron silica particles using chloroform as porogen. Thus, the MIP binding behavior could be easily evaluated by fluorescence titrations in suspension to monitor the spectral changes upon addition of the GPS analytes. While MIPs prepared with GPS-TBA and GPS-THA both displayed satisfactory imprinting following titration with the corresponding analytes in chloroform, GPS-THA MIPs displayed better selectivity against competing molecules. Moreover, the THA+ counterion was found to be a more powerful phase transfer agent than TBA+ in a biphasic assay, enabling the direct fluorescence detection and quantification of GPS in water. A limit of detection of 1.45 μM and a linear range of 5–55 μM were obtained, which match well with WHO guidelines for the acceptable daily intake of GPS in water (5.32 μM). KW - Glyphosate KW - Molecular imprinting KW - Core-shell particles KW - Fluorescent sensors PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-555281 SN - 2045-2322 VL - 12 IS - 1 SP - 1 EP - 15 PB - Macmillan Publishers Limited CY - London AN - OPUS4-55528 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kislenko, Evgeniia A1 - Wagner, Sabine A1 - Biyikal, Mustafa A1 - Rurack, Knut T1 - Molecularly Imprinted Polymers for Fluorescence Sensing of the Herbecide 2,4-D N2 - Application of pesticides is ubiquitous to better manage agricultural production. However, most of these compounds are harmful or toxic for humans and highly persistent in the environment, even in the crops themselves. Therefore, the rapid and reliable monitoring of pesticide residues is a very important area of environmental analysis. If conducted directly in the field, the use of fluorescence sensing methods is particularly attractive, because they allow for sensitive and rapid analyses while being very versatile. Recently, molecularly imprinted polymers (MIPs) have emerged as promising candidates for the primary sensing phase. Their robustness, low price and tunability render them an attractive alternative to more conventional biosensors based on antibodies. At present, a number of MIP formats are available besides the initial bulk polymer monoliths. Core/shell micro- and nanoparticles are especially suitable for sensor applications. A thin shell provides many advantages compared to a bulk polymer, such as fast diffusion of analyte, homogeneity of binding cavities and a higher number of binding sites closer to the surface. A strategy for sensory MIP synthesis is to introduce the fluorophore covalently into the polymer layer. The fluorescent probe monomer may thus consist of a fluorophore unit, a polymerizable unit and a recognition unit. One of the issues in targeting acidic pesticides such as 2,4-D is the fact that usually their deprotonated form is used for imprinting in organic solvents, commonly as the tetraalkylammonium salt. This approach harbours drawbacks when it comes to analytical rebinding, because real samples seldom contain such counterions. In our group, we have thus developed a new fluorescent probe monomer containing the 2-aminopyridine moiety, which forms strong enough intermolecular hydrogen bonds with the carboxylic acid group of neat 2,4-D. During a titration of the probe monomer with the analyte, hydrogen bond formation is indicated by spectral shifts and fluorescence enhancement. Crystallography studies verified complex formation. The higher fluorometric response of the core-shell MIP compared to a non-imprinted control polymer proved successful imprinting. Here, we will discuss the pros and cons of neutral molecule vs. salt imprinting, potentially expanding the possibilities of fluorescent sensory MIPs. T2 - MIP2018 CY - Hebrew University, Jerusalem, Israel DA - 24.06.2018 KW - Molecularly imprinted polymers KW - 2,4-D KW - Fluorescence KW - Sensing PY - 2018 AN - OPUS4-45598 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kislenko, Evgeniia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymers (MIPs) for sensing of phosphorylated protein epitopes N2 - Early detection of cancer is instrumental for successful therapeutic outcomes, but it is presently a considerable challenge. Biopsy of potentially cancerous tissues is the gold standard in medicine for the diagnosis and prognosis of this disease; however, it may not be possible in many cases due to tumour position or other complications. Liquid biopsy-based detection of specific cancer markers in biological fluids can be easily performed via immunoanalytical techniques. However, antibody-based methods suffer from high cost of tumour specific antibodies due to difficult and lengthy production. Furthermore, antibodies may have limited specificity to the target molecule, and limited lifetimes. The so-called “plastic antibodies” as MIPs can be a more affordable, reliable and stable alternative to antibodies, especially for cancer diagnostics. Our goal is to create MIP particles to selectively bind cancer biomarkers and rapidly display a fluorescence change upon interaction with molecules of interest. Epitopes containing the phosphorylated tyrosine (pY) motif such as tripeptide YpYG and tetrapeptide pYEEI were selected as target analytes. Cancers may disrupt tyrosine phosphorylation processes regulated by human tyrosine kinases such as ZAP-70 and subsequently lead to a pronounced increase in pY residues on proteins. To ensure fast diffusion of analyte and rapid response core/shell silica micro- and nanoparticles with a thin polymer shell was chosen as the format for MIP synthesis. Fluorescent probe monomers consisting of fluorophore and recognition units are directly integrated in the polymer shell to obtain fluorescence response upon analyte binding. We have synthesized the fluorescent MIP particles based on the previously published report [W. Wan et al., Chem. Eur. J., 2017, 23, 15974-1598] for the novel phosphorylated targets with a high imprinting factor and high degree of discrimination between target analyte and non-phosphorylated and smaller competitors. The synthesized particles may be used in microfluidic devices for the rapid diagnostics of cancer. T2 - GSSMIP2019 CY - Berlin, Germany DA - 28.08.2019 KW - Analytical Sciences KW - Sensorik PY - 2019 AN - OPUS4-50227 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - CONF A1 - Kislenko, Evgeniia A1 - Gawlitza, Kornelia A1 - Rurack, Knut T1 - Fluorescent molecularly imprinted polymers (MIPs) for sensing of phosphorylated protein epitopes N2 - Early detection of cancer is instrumental for successful therapeutic outcomes, but it is presently a considerable challenge. Biopsy of potentially cancerous tissues is the gold standard in medicine for the diagnosis and prognosis of this disease; however, it may not be possible in many cases due to tumour position or other complications. Liquid biopsy-based detection of specific cancer markers in biological fluids can be easily performed via immunoanalytical techniques. However, antibody-based methods suffer from high cost of tumour specific antibodies due to difficult and lengthy production. Furthermore, antibodies may have limited specificity to the target molecule, and limited lifetimes. The so-called “plastic antibodies” as MIPs can be a more affordable, reliable and stable alternative to antibodies, especially for cancer diagnostics. Our goal is to create MIP particles to selectively bind cancer biomarkers and rapidly display a fluorescence change upon interaction with molecules of interest. Epitopes containing the phosphorylated tyrosine (pY) motif such as tripeptide YpYG and tetrapeptide pYEEI were selected as target analytes. Cancers may disrupt tyrosine phosphorylation processes regulated by human tyrosine kinases such as ZAP-70 and subsequently lead to a pronounced increase in pY residues on proteins. To ensure fast diffusion of analyte and rapid response core/shell silica micro- and nanoparticles with a thin polymer shell was chosen as the format for MIP synthesis. Fluorescent probe monomers consisting of fluorophore and recognition units are directly integrated in the polymer shell to obtain fluorescence response upon analyte binding. We have synthesized the fluorescent MIP particles based on the previously published report for the novel phosphorylated targets with a high imprinting factor and high degree of discrimination between target analyte and non-phosphorylated and smaller competitors. The synthesized particles may be used in microfluidic devices for the rapid diagnostics of cancer. T2 - GSSMIP2019 CY - Berlin, Deutschland DA - 28.08.2019 KW - Analytical Sciences KW - Sensorik PY - 2019 AN - OPUS4-50228 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Kislenko, Evgeniia A1 - Incel, A. A1 - Gawlitza, Kornelia A1 - Sellergren, B. A1 - Rurack, Knut T1 - Towards molecularly imprinted polymers that respond to and capture phosphorylated tyrosine epitopes using fluorescent bis-urea and bis-imidazolium receptors N2 - Early detection of cancer is essential for successful treatment and improvement in patient prognosis. Deregulation of post-translational modifications (PTMs) of proteins, especially phosphorylation, is present in many types of cancer. Therefore, the development of materials for the rapid sensing of low abundant phosphorylated peptides in biological samples can be of great therapeutic value. In this work, we have synthesised fluorescent molecularly imprinted polymers (fMIPs) for the detection of the phosphorylated tyrosine epitope of ZAP70, a cancer biomarker. The polymers were grafted as nanometer-thin shells from functionalised submicron-sized silica particles using a reversible addition-fragmentation chain-transfer (RAFT) polymerisation. Employing the combination of fluorescent urea and intrinsically cationic bis-imidazolium receptor cross-linkers, we have developed fluorescent sensory particles, showing an imprinting factor (IF) of 5.0. The imprinted polymer can successfully distinguish between phosphorylated and non-phosphorylated tripeptides, reaching lower micromolar sensitivity in organic solvents and specifically capture unprotected peptide complements in a neutral buffer. Additionally, we have shown the importance of assessing the influence of counterions present in the MIP system on the imprinting process and final material performance. The potential drawbacks of using epitopes with protective groups, which can co-imprint with targeted functionality, are also discussed. KW - Functional monomers KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-588089 SN - 2050-750X SP - 1 EP - 10 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-58808 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER - TY - JOUR A1 - Burnage, Samual A1 - Bell, Jérémy A1 - Wan, Wei A1 - Kislenko, Evgeniia A1 - Rurack, Knut T1 - Combining a hybrid chip and tube microfluidic system with fluorescent molecularly imprinted polymer (MIP) core–shell particles for the derivatisation, extraction, and detection of peptides with N-terminating phosphorylated tyrosine N2 - The reliable identification and quantitation of phosphorylated amino acids, peptides and proteins is one of the key challenges in contemporary bioanalytical research, an area of particular interest when attempting to diagnose and treat diseases at an early stage. We have developed a synthetic probe for targeting phosphorylated amino acids, based on core–shell submicron-sized particles consisting of a silica core, coated with a molecularly imprinted polymer (MIP) shell. The MIP layer contains a fluorescent probe crosslinker which binds selectively to phosphorylated tyrosine (pY) moieties with a significant imprinting factor (IF) and responds with a "light-up” fluorescence signal. The bead-based ratiometric detection scheme has been successfully transferred to a microfluidic chip format and its applicability to rapid assays has been exemplarily shown by discriminating a pY-terminating oligopeptide against its nonphosphorylated counterpart. Such miniaturised devices could lead to an automated pY or pY N-terminated peptide measurement system in the future. The setup combines a modular microfluidic system for amino acid derivatisation, extraction (by micropillar co-flow) and selective adsorption and detection with the fluorescent MIP core–shell particle probes. A miniaturised optical assembly for low-light fluorescence measurements was also developed, based on miniaturised opto-electronic parts and optical fibres. The emission from the MIP particles upon binding of pY or pY N-terminated peptides could be monitored in real-time. KW - Microfluidics KW - Molecularly imprinted polymers KW - Phosphorylated peptides KW - Fluorescence KW - Core-shell particles PY - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:kobv:b43-569204 SN - 1473-0197 VL - 23 IS - 3 SP - 466 EP - 474 PB - Royal Society of Chemistry CY - Cambridge AN - OPUS4-56920 LA - eng AD - Bundesanstalt fuer Materialforschung und -pruefung (BAM), Berlin, Germany ER -